Addison-Wesley Professional Ruby Series V‘V

RuBY ON RAILS 3
TUTORIAL

LEARN RAILS BY EXAMPLE

MICHAEL HARTL
FOREWORDS BY DEREK SIVERS AND OBIE FERNANDEZ

Praise for Ruby on Rails™ 3
Tutorial

RailsTutorial.org: Michael Hartl’'s awesome new
Rails Tutorial

The Ruby on Rails™ 3 Tutorial: Learn Rails by Example by Michael Hartl has become a
must read for developers learning how to build Rails apps.

—Peter Cooper, editor of Ruby Inside

Very detailed and hands-on Rails Tutorial!

Great job! I'm learning Rails, and found your tutorial to be one of the most detailed and
hands-on guides. Besides many details of Rails, it also taught me about Git, Heroku,
RSpec, Webrat, and most important (at least to me), it emphasized the Test-Driven
Development (TDD) methodology. I learned a lot from your tutorial.

Keep up the good job! Thanks so much for sharing it.

—Albert Liu, senior manager, Achievo Corporation.

Ruby on Rails Tutorial is the best!

Just wanted to say that your Ruby on Rails tutorial is the best!

I've been trying for a while to wrap my head around Rails. Going through your tutorial,
I'm finally feeling comfortable in the Rails environment. Your pedagogical style of

gradually introducing more complex topics while at the same time giving the reader the
instant gratification and a sense of accomplishment with working examples really works
for me. I also like the tips and suggestions that give me a sense of learning from a real
Rails insider. Your e-mail response to a problem I ran into is an example of your generous

sharing of your experience.

—Ron Bingham, CEO, SounDBuytz

| love the writing style of the Rails Tutorial

I love the writing style of the Rails Tutorial, and there is so much content that is different
from other Rails books out there, making it that much more valuable... Thanks for your
work!

—Allen Ding

RuBY ON RAILS™ 3 TUTORIAL

A_ddison-WesIey :
Professional Ruby Series

Obie Fernandez, Series Editor

DISTRIBUTED

PROGRAMMING
REFACTORING WITH RUBY THE RAILS 3 WAY

vvAddison-Wesley

Visit informit.com/ruby for a complete list of available products.

T he Addison-Wesley Professional Ruby Series provides readers
with practical, people-oriented, and in-depth information about
applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference
books, written by experienced practitioners, will never be satisfied solely
by blogs and the Internet.

PEARSON

#Addison-Wesley Cisco Press ExAMCRAM IBM e §3 PRENTICE gAMG | Safari’

Press. + ¢e HALL &TTIE T T e onine

RuBY ON RAILS™ 3 TUTORIAL

Learn Rails™ by Example

Michael Hartl

vvAddison-Wesley

Upper Saddle River, NJ @ Boston e Indianapolis e San Francisco
New York e Toronto @ Montreal ® London e Munich e Paris @ Madrid

Capetown e Sydney e Tokyo e Singapore @ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hartl, Michael.
Ruby on rails 3 tutorial : learn Rails by example / Michael Hartl.
p. cm.
Includes index.
ISBN-10: 0-321-74312-1 (pbk. : alk. paper)
ISBN-13: 978-0-321-74312-1 (pbk. : alk. paper)
1. Ruby on rails (Electronic resource) 2. Web site development. 3. Ruby
(Computer program language) I. Title.
TK5105.8885.R83H37 2011

005.1"17-dc22 2010039450

Copyright © 2011 Michael Hartl

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

The source code in Ruby on Rails™ 3 Tutorial is released under the MIT License.

ISBN 13: 978-0-321-74312-1
ISBN 10: 0-321-74312-1
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan
First printing, December 2010

Editor-in-Chief
Mark Taub

Executive Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Erica Orloff

Indexer
Claire Splan

Proofreader
Claire Splan

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Compositor
Glyph International

Contents

Foreword by Derek Sivers ~ xv

Foreword by Obie Fernandez xvii

Acknowledgments xix
About the Author xxi

Chapter 1 From Zero to Deploy 1

1.1

1.2

1.3

Introduction 3

1.1.1 Comments for Various Readers 4
1.1.2 “Scaling” Rails 7

1.1.3 Conventions in This Book 7

Up and Running 9

1.2.1 Development Environments 9
1.2.2 Ruby, RubyGems, Rails, and Git 11
1.2.3 The First Application 15

1.2.4 Bundler 16

1.2.5 rails server 20

1.2.6 Model-View-Controller MVC) 22
Version Control with Git 24

1.3.1 Installation and Setup 24

1.3.2 Adding and Committing 26

1.3.3 What Good Does Git Do You? 28
1.3.4 GitHub 29

1.3.5 Branch, Edit, Commit, Merge 31

vii

viii

1.4

1.5

Deploying 35

1.4.1 Heroku Setup 36

1.4.2 Heroku Deployment, Step One 37
1.4.3 Heroku Deployment, Step Two 37
1.44 Heroku Commands 39

Conclusion 40

Chapter2 A Demo App 41

2.1

2.2

2.3

2.4

Planning the Application 41

2.1.1 Modeling Users 43

2.1.2 Modeling Microposts 44

The Users Resource 44

2.2.1 AUser Tour 46

222 MVCin Action 49

2.2.3 Weaknesses of This Users Resource 58
The Microposts Resource 58

2.3.1 A Micropost Microtour 58

2.3.2 Putting the micro in Microposts 61
2.3.3 A User has_many Microposts 63
2.3.4 Inheritance Hierarchies 66

2.3.5 Deploying the Demo App 68

Conclusion 69

Chapter 3 Mostly Static Pages 71

3.1

3.2

3.3

3.4
3.5

Static Pages 74

3.1.1 Truly Static Pages 75

3.1.2 Static Pages with Rails 78

Our First Tests 84

3.2.1 Testing Tools 84

3.2.2 TDD: Red, Green, Refactor 86

Slightly Dynamic Pages 103

3.3.1 Testing a Title Change 103

3.3.2 Passing Tite Tests 106

3.3.3 Instance Variables and Embedded Ruby 108
3.3.4 Eliminating Duplication with Layouts 112
Conclusion 115

Exercises 116

Contents

Contents

Chapter 4 Rails-Flavored Ruby 119

4.1 Motivation 119
4.1.1 Atitle Helper 119
4.1.2 Cascading Style Sheets 122
4.2 Strings and Methods 125
4.2.1 Comments 125
422 Suings 126
4.2.3 Objects and Message Passing 129
424 Method Definitions 132
425 Backtothe title Helper 133
4.3 Other Data Structures 134
4.3.1 Arrays and Ranges 134
432 Blocks 137
4.3.3 Hashes and Symbols 139
4.3.4 CSS Revisited 142
4.4 Ruby Classes 144
4.4.1 Constructors 144
4.42 Class Inheritance 145
443 Modifying Built-In Classes 148
4.4.4 A Controller Class 150
4.4.5 AUserClass 152
4.5 Exercises 154

Chapter 5 Filling in the Layout 157

5.1 Adding Some Structure 157
5.1.1 Site Navigation 159
5.1.2 Custom CSS 164
5.1.3 Partials 171

5.2 Layout Links 177
5.2.1 Integration Tests 178
5.2.2 Rails Routes 181
5.2.3 Named Routes 183

5.3 User Signup: A First Step 186
5.3.1 Users Controller 186
5.3.2 Signup URL 188

5.4 Conclusion 191

5.5 Exercises 191

b'e Contents

Chapter 6 Modeling and Viewing Users, Part I 193

6.1 User Model 194
6.1.1 Database Migrations 196
6.1.2 The Model File 201
6.1.3 Creating User Objects 203
6.1.4 Finding User Objects 207
6.1.5 Updating User Objects 208
6.2 User Validations 210
6.2.1 Validating Presence 210
6.2.2 Length Validation 217
6.2.3 Format Validation 218
6.2.4 Uniqueness Validation 222
6.3 Viewing Users 227
6.3.1 Debug and Rails Environments 227
6.3.2 User Model, View, Controller 230
6.3.3 A Users Resource 232
6.4 Conclusion 236
6.5 Exercises 237

Chapter 7 Modeling and Viewing Users, Part II 239

7.1 Insecure Passwords 239
7.1.1 Password Validations 240
7.1.2 A Password Migration 244
7.1.3 An Active Record Callback 247
7.2 Secure Passwords 250
7.2.1 A Secure Password Test 251
7.2.2 Some Secure Password Theory 252
7.2.3 Implementing has_password? 254
7.2.4 An Authenticate Method 258
7.3 Better User Views 262
7.3.1 Testing the User Show Page (With Factories) 263
7.3.2 A Name and A Gravatar 268
7.3.3 A User Sidebar 276
7.4 Conclusion 279
7.4.1 Git Commit 279
7.4.2 Heroku Deploy 280
7.5 Exercises 280

Contents

Chapter 8 Sign Up 283

8.1 Signup Form 283
8.1.1 Using form_for 286
8.1.2 The Form HTML 288
8.2 Signup Failure 292
8.2.1 Testing Failure 292
8.2.2 A Working Form 295
8.2.3 Signup Error Messages 299
8.2.4 Filtering Parameter Logging 303
8.3 Signup Success 305
8.3.1 Testing Success 305
8.3.2 The Finished Signup Form 308
8.3.3 TheFlash 308
8.3.4 The First Signup 312
8.4 RSpec Integration Tests 313
8.4.1 Integration Tests with Style 315
8.4.2 Users Signup Failure Should not Make a New User 315
8.4.3 Users Signup Success Should Make a New User 319
8.5 Conclusion 321
8.6 Exercises 321

Chapter 9 Sign In, Sign Out 325

9.1 Sessions 325
9.1.1 Sessions Controller 326
9.1.2 Signin Form 328
9.2 Signin Failure 332
9.2.1 Reviewing form Submission 333
9.2.2 Failed Signin (Test and Code) 335
9.3 Signin Success 338
9.3.1 The Completed create Action 338
9.3.2 Remember Me 340
9.3.3 Current User 345
9.4 Signing Out 354
9.4.1 Destroying Sessions 354
9.4.2 Signin Upon Signup 356
9.4.3 Changing the Layout Links 358
9.4.4 Signin/Out Integration Tests 362

9.5
9.6

Contents

Conclusion 363
Exercises 363

Chapter 10 Updating, Showing, and Deleting Users 365

10.1

10.2

10.3

10.4

10.5
10.6

Updating Users 365

10.1.1 Edit Form 366

10.1.2 Enabling Edits 373
Protecting Pages 376

10.2.1 Requiring Signed-In Users 376
10.2.2 Requiring the Right User 379
10.2.3 Friendly Forwarding 382
Showing Users 384

10.3.1 User Index 385

10.3.2 Sample Users 389

10.3.3 Pagination 392

10.3.4 Partial Refactoring 398
Destroying Users 399

10.4.1 Administrative Users 399
10.4.2 The destroy Action 404
Conclusion 408

Exercises 409

Chapter 11 User Microposts 411

11.1

11.3

A Micropost Model 411

11.1.1 The Basic Model 412

11.1.2 User/Micropost Associations 414
11.1.3 Micropost Refinements 419
11.1.4 Micropost Validations 423
Showing Microposts 425

11.2.1 Augmenting the User Show Page 426
11.2.2 Sample Microposts 432
Manipulating Microposts 434

11.3.1 Access Control 436

11.3.2 Creating Microposts 439

11.3.3 A Proto-feed 444

11.3.4 Destroying Microposts 452
11.3.5 Testing the New Home Page 456

Contents

11.4
11.5

Conclusion 457
Exercises 458

Chapter 12 Following Users 461

12.1

12.2

12.3

12.4

12.5

Index

The Relationship Model 463

12.1.1 A Problem with the Data Model (and a Solution)
12.1.2 User/Relationship Associations 470
12.1.3 Validations 473

12.1.4 Following 474

12.1.5 Followers 479

A Web Interface for Following and Followers 482
12.2.1 Sample Following Data 482

12.2.2 Stats and a Follow Form 484

12.2.3 Following and Followers Pages 494
12.2.4 A Working Follow Button the Standard Way 498
12.2.5 A Working Follow Button with Ajax 502
The Status Feed 507

12.3.1 Motivation and Strategy 508

12.3.2 A First Feed Implementation 511

12.3.3 Scopes, Subselects, and a Lambda 513
12.3.4 The New Status Feed 518

Conclusion 519

12.4.1 Extensions to the Sample Application 520
12.4.2 Guide to Further Resources 522

Exercises 523

527

464

This page intentionally left blank

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails,
and then even more loudly switch back to PHP (Google me to read about the drama).
This book by Michael Hartl came so highly recommended that I had to try it, and Ruby
on Rails™ 3 Tutorial is what I used to switch back to Rails again.

Though I've worked my way through many Rails books, this is the one that finally
made me get it. Everything is done very much “the Rails way”—a way that felt very
unnatural to me before, but now after doing this book finally feels natural. This is also
the only Rails book that does test-driven development the entire time, an approach highly
recommended by the experts but which has never been so clearly demonstrated before.
Finally, by including Git, GitHub, and Heroku in the demo examples, the author really
gives you a feel for what it’s like to do a real-world project. The tutorial’s code examples
are not in isolation.

The linear narrative is such a great format. Personally, I powered through Rails
Tutorial in three long days, doing all the examples and challenges at the end of each
chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate
benefit.

Enjoy!

—Derek Sivers (sivers.org)

Founder, CD Baby and Thoughts, Ltd.

This page intentionally left blank

Foreword

“If I want to learn web development with Ruby on Rails, how should I start?” For years
Michael Hartl has provided the answer as author of the RailsSpace tutorial in our series
and now the new Ruby on Rails™ 3 Tutorial that you hold in your hands (or PDF reader,
I guess.)

I’'m so proud of having Michael on the series roster. He is living, breathing proof
that we Rails folks are some of the luckiest in the wide world of technology. Before
getting into Ruby, Michael taught theoretical and computational physics at Caltech for
six years, where he received the Lifetime Achievement Award for Excellence in Teaching
in 2000. He is a Harvard graduate, has a Ph.D. in Physics from Caltech, and is an
alumnus of Paul Graham’s esteemed Y Combinator program for entrepreneurs. And
what does Michael apply his impressive experience and teaching prowess to? Teaching
new software developers all around the world how to use Ruby on Rails effectively! Lucky
we are indeed!

The availability of this tutorial actually comes at a critical time for Rails adoption.
We're five years into the history of Rails and today’s version of the platform has unprece-
dented power and flexibility. Experienced Rails folks can leverage that power effectively,
but we’re hearing growing cries of frustration from newcomers. The amount of informa-
tion out there about Rails is fantastic if you know what you’re doing already. However,
if you're new, the scope and mass of information about Rails can be mind-boggling.

Luckily, Michael takes the same approach as he did in his first book in the series,
building a sample application from scratch, and writes in a style that’s meant to be read
from start to finish. Along the way, he explains all the little details that are likely to
trip up beginners. Impressively, he goes beyond just a straightforward explanation of
what Rails does and ventures into prescriptive advice about good software development

xviii Foreword

practices, such as test-driven development. Neither does Michael constrain himself to
a box delineated by the extents of the Rails framework—he goes ahead and teaches
the reader to use tools essential to existence in the Rails community, such as Git and
GitHub. In a friendly style, he even provides copious contextual footnotes of benefit
to new programmers, such as the pronunciation of SQL and pointers to the origins of
lorem fpsum. Tying all the content together in a way that remains concise and usable is
truly a tour de force of dedication!

I tell you with all my heart that this book is one of the most significant titles in
my Professional Ruby Series, because it facilitates the continued growth of the Rails
ecosystem. By helping newcomers become productive members of the community
quickly, he ensures that Ruby on Rails continues its powerful and disruptive charge
into the mainstream. The Rails Tutorial is potent fuel for the fire that is powering
growth and riches for so many of us, and for that we are forever grateful.

—Obie Fernandez, Series Editor

Acknowledgments

Ruby on Rails™ Tutorial owes a lot to my previous Rails book, RailsSpace, and hence
to my coauthor on that book, Aurelius Prochazka. I'd like to thank Aure both for the
work he did on that book and for his support of this one. I'd also like to thank Debra
Williams Cauley, my editor on both RailsSpace and Rails Tutorial; as long as she keeps
taking me to baseball games, I'll keep writing books for her.

I'd like to acknowledge a long list of Rubyists who have taught and inspired me
over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy Kemper,
Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt Aimonetti, Gregg
Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-
Werner, Chris Wanstrath, Chad Fowler, Josh Susser, Obie Fernandez, lan McFarland,
Steven Bristol, Giles Bowkett, Evan Dorn, Long Nguyen, James Lindenbaum, Adam
Wiggins, Tikhon Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, the good people
at Pivotal Labs, the Heroku gang, the thoughtbot guys, and the GitHub crew. Finally,
many, many readers—far too many to lis—have contributed a huge number of bug
reports and suggestions during the writing of this book, and I gratefully acknowledge
their help in making it as good as it can be.

This page intentionally left blank

About the Author

Michael Hartl is a programmer, educator, and entrepreneur. Michael is coauthor of
RailsSpace, a best-selling Rails tutorial book published in 2007, and was cofounder
and lead developer of Insoshi, a popular social networking platform in Ruby on Rails.
Previously, he taught theoretical and computational physics at the California Institute of
Technology (Caltech) for six years, where he received the Lifetime Achievement Award
for Excellence in Teaching in 2000. Michael is a graduate of Harvard College, has a
Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator program.

This page intentionally left blank

CHAPTER 1

From Zero to Deploy

Welcome to Ruby on Rails™ 3 Tutorial: Learn Rails by Example. The goal of this book
is to be the best answer to the question, “If I want to learn web development with
Ruby on Rails, where should I start?” By the time you finish Ruby on Rails Tutorial,
you will have all the knowledge you need to develop and deploy your own custom web
applications. You will also be ready to benefit from the many more advanced books,
blogs, and screencasts that are part of the thriving Rails educational ecosystem. Finally,
since Ruby on Rails Tutorial uses Rails 3.0, the knowledge you gain here will be fully up
to date with the latest and greatest version of Rails.!

Ruby on Rails Tutorial follows essentially the same approach as my previous Rails
book,? teaching web development with Rails by building a substantial sample application
from scratch. As Derek Sivers notes in the foreword, this book is structured as a linear
narrative, designed to be read from start to finish. If you are used to skipping around
in technical books, taking this linear approach might require some adjustment, but I
suggest giving it a try. You can think of Ruby on Rails Tutorial as a video game where
you are the main character, and where you level up as a Rails developer in each chapter.
(The exercises are the minibosses.)

In this first chapter, we’ll get started with Ruby on Rails by installing all the necessary
software and setting up our development environment (Section 1.2). We'll then create
our first Rails application, called (appropriately enough) first_app. Rails Tutorial
empbhasizes good software development practices, so immediately after creating our fresh

1. The most up-to-date version of Ruby on Rails Tutorial can be found on the book’s website at http://rails-
tutorial.org/. If you are reading this book offline, be sure to check the online version of the Rails Tutorial book at
http://railstutorial.org/book for the latest updates. In addition, PDF books purchased through railstutorial.org
will continue to be updated as long as Rails 3.0 and RSpec 2.0 are still under active development.

2. RailsSpace, by Michael Hartl and Aurelius Prochazka (Addison-Wesley, 2007).

http://railstutorial.org/
http://railstutorial.org/
http://railstutorial.org/book

2 Chapter 1: From Zero to Deploy

new Rails project we’ll put it under version control with Git (Section 1.3). And, believe
it or not, in this chapter we’ll even put our first app on the wider web by deploying it to
production (Section 1.4).

In Chapter 2, we’ll make a second project, whose purpose will be to demonstrate
the basic workings of a Rails application. To get up and running quickly, we’ll build
this demo app (called demo_app) using scaffolding (Box 1.1) to generate code; since this
code is both ugly and complex, Chapter 2 will focus on interacting with the demo app
through its URLs® using a web browser.

In Chapter 3, we'll create a sample application (called sample_app), this time writing
all the code from scratch. We'll develop the sample app using test-driven development
(TDD), getting started in Chapter 3 by creating static pages and then adding a little
dynamic content. We'll take a quick detour in Chapter 4 to learn a little about the Ruby
language underlying Rails. Then, in Chapter 5 through Chapter 10, we’ll complete the
foundation for the sample application by making a site layout, a user data model, and a
full registration and authentication system. Finally, in Chapter 11 and Chapter 12 we’ll
add microblogging and social features to make a working example site.

The final sample application will bear more than a passing resemblance to a certain
popular social microblogging site—a site which, coincidentally, is also written in Rails.
Though of necessity our efforts will focus on this specific sample application, the emphasis
throughout Rails Tutorial will be on general principles, so that you will have a solid
foundation no matter what kinds of web applications you want to build.

Box 1.1 Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement, starting
with the famous 15-minute weblog video by Rails creator David Heinemeier Hansson,
now updated as the 15-minute weblog using Rails 2 by Ryan Bates. These videos
are a great way to get a taste of Rails’ power, and | recommend watching them.
But be warned: they accomplish their amazing fifteen-minute feat using a feature
called scaffolding, which relies heavily on generated code, magically created by the
Rails generate command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding
approach—it’s quicker, easier, more seductive. But the complexity and sheer amount
of code in the scaffolding can be utterly overwhelming to a beginning Rails developer;

3. URL stands for Uniform Resource Locator. In practice, it is usually equivalent to “the thing you see in the
address bar of your browser”. By the way, the current preferred term is UR/, for Uniform Resource Identifier,
but popular usage still tilts toward URL.

1.1 Introduction 3

you may be able to use it, but you probably won’t understand it. Following the
scaffolding approach risks turning you into a virtuoso script generator with little (and
brittle) actual knowledge of Rails.

In Ruby on Rails Tutorial, we'll take the (nearly) polar opposite approach: although
Chapter 2 will develop a small demo app using scaffolding, the core of Rails Tutorial is
the sample app, which we’ll start writing in Chapter 3. At each stage of developing the
sample application, we will generate small, bite-sized pieces of code—simple enough
to understand, yet novel enough to be challenging. The cumulative effect will be a
deeper, more flexible knowledge of Rails, giving you a good background for writing
nearly any type of web application.

1.1 Introduction

Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful and
popular frameworks for building dynamic web applications. Rails users run the gamut
from scrappy startups to huge companies: Posterous, UserVoice, 37signals, Shopify,
Scribd, Twitter, Hulu, the Yellow Pages—the list of sites using Rails goes on and on.
There are also many web development shops that specialize in Rails, such as ENTP,
thoughtbot, Pivotal Labs, and Hashrocket, plus innumerable independent consultants,
trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100 percent open-source,
available under the permissive MIT License, and as a result it also costs nothing to
download and use. Rails also owes much of its success to its elegant and compact design;
by exploiting the malleability of the underlying Ruby language, Rails effectively creates
a domain-specific language for writing web applications. As a result, many common
web programming tasks—such as generating HTML, making data models, and routing
URLs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework
design. For example, Rails was one of the first frameworks to fully digest and implement
the REST architectural style for structuring web applications (which we’ll be learning
about throughout this tutorial). And when other frameworks develop successful new
techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t
hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of
Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s
modular design, stable API, and improved performance. (Anyone who has attended a
talk by Merb developer and Rails core team member Yehuda Katz can’t help but notice
what an extremely good idea it was to bring the Merb team on board.)

4 Chapter 1: From Zero to Deploy

Finally, Rails benefits from an unusually enthusiastic and diverse community. The
results include hundreds of open-source contributors, well-attended conferences, a huge
number of plugins and gems (self-contained solutions to specific problems such as
pagination and image upload), a rich variety of informative blogs, and a cornucopia
of discussion forums and IRC channels. The large number of Rails programmers
also makes it easier to handle the inevitable application errors: the “Google the error
message” algorithm nearly always produces a relevant blog post or discussion-forum

thread.

1.1.1 Comments for Various Readers

Rails Tutorial contains integrated tutorials not only for Rails, but also for the underlying
Ruby language, as well as for HTML, CSS, some JavaScript, and even a little SQL. This
means that, no matter where you currently are in your knowledge of web development,
by the time you finish this tutorial you will be ready for more advanced Rails resources,
as well as for the more systematic treatments of the other subjects mentioned.

Rails derives much of its power from “magic’—that is, framework features (such
as automatically inferring object attributes from database columns) that accomplish
miracles but whose mechanisms can be rather mysterious. Ruby on Rails Tutorial is not
designed to explain this magic—mainly because most Rails application developers never
need to know what’s behind the curtain. (After all, Ruby itself is mostly written in the
C programming language, but you don’t have to dig into the C source to use Ruby.) If
you’re a confirmed pull-back-the-curtain kind of person, I recommend 7he Rails 3 Way
by Obie Fernandez as a companion volume to Ruby on Rails Tutorial.

Although this book has no formal prerequisites, you should of course have at least
some computer experience. If you've never even used a text editor before, it will be tough
going, but with enough determination you can probably soldier through. If, on the other
hand, your . emacs file is so complex it could make a grown man cry, there is still plenty
of material to keep you challenged. Rails Tutorialis designed to teach Rails development
no matter what your background is, but your path and reading experience will depend

on your particular circumstances.

All readers: One common question when learning Rails is whether to learn Ruby first.
The answer depends on your personal learning style. If you prefer to learn everything
systematically from the ground up, then learning Ruby first might work well for you,
and there are several book recommendations in this section to get you started. On the
other hand, many beginning Rails developers are excited about making web applications,

1.1 Introduction 5

and would rather not slog through a 500-page book on pure Ruby before ever writing
a single web page. Moreover, the subset of Ruby needed by Rails developers is different
from what you’ll find in a pure-Ruby introduction, whereas Rails Tutorial focuses on
exactly that subset. If your primary interest is making web applications, I recommend
starting with Rails Tutorial and then reading a book on pure Ruby next. It’s not an
all-or-nothing proposition, though: if you start reading Rails Tutorial and feel your
(lack of) Ruby knowledge holding you back, feel free to switch to a Ruby book and
come back when you feel ready. You might also consider getting a taste of Ruby by
following a short online tutorial, such as can be found at http://www.ruby-lang.org/ or
http://rubylearning.com/.

Another common question is whether to use tests from the start. As noted in the
introduction, Rails Tutorial uses test-driven development (also called test-first devel-
opment), which in my view is the best way to develop Rails applications, but it does
introduce a substantial amount of overhead and complexity. If you find yourself getting
bogged down by the tests, feel free to skip them on first reading.* Indeed, some readers
may find the inclusion of so many moving parts—such as tests, version control, and
deployment—a bit overwhelming at first, and if you find yourself expending excessive
energy on any of these steps, don 't hesitate to skip them. Although I have included only
material I consider essential to developing professional-grade Rails applications, only the
core application code is strictly necessary the first time through.

Inexperienced programmers (non-designers): Rails Tutorial doesn’t assume any back-
ground other than general computer knowledge, so if you have limited programming
experience this book is a good place to start. Please bear in mind thatitis only the first step
on a long journey; web development has many moving parts, including HTML/CSS,
JavaScript, databases (including SQL), version control, and deployment. This book con-
tains short introductions to these subjects, but there is much more to learn.

Inexperienced programmers (designers): Your design skills give you a big leg up, since
you probably already know HTML and CSS. After finishing this book you will be in an
excellent position to work with existing Rails projects and possibly start some of your
own. You may find the programming material challenging, but the Ruby language is
unusually friendly to beginners, especially those with an artistic bent.

4. In practice, this will involve omitting all files with spec in their name, as we will start to see in Section 3.2.2.

http://www.ruby-lang.org/
http://rubylearning.com/

6 Chapter 1: From Zero to Deploy

After finishing Ruby on Rails Tutorial, I recommend that newer programmers read
Beginning Rubyby Peter Cooper, which shares the same basic instructional philosophy as
Rails Tutorial. 1 also recommend The Ruby Way by Hal Fulton. Finally, to gain a deeper
understanding of Rails, I recommend 7%e Rails 3 Way by Obie Fernandez.

Web applications, even relatively simple ones, are by their nature fairly complex.
If you are completely new to web programming and find Rails Tutorial overwhelm-
ing, it could be that you’re not quite ready to make web applications yet. In that case,
I’d suggest learning the basics of HTML and CSS and then giving Rails Tutorial an-
other go. (Unfortunately, I don’t have a personal recommendation here, but Head First
HTML looks promising, and one reader recommends CSS: The Missing Manual by
David Sawyer McFarland.) You might also consider reading the first few chapters of
Beginning Ruby, which starts with sample applications much smaller than a full-blown
web app.

Experienced programmers new to web development: Your previous experience means
you probably already understand ideas like classes, methods, data structures, etc., which
is a big advantage. Be warned that if your background is in C/C++ or Java, you may
find Ruby a bit of an odd duck, and it might take time to get used to it; just stick with
it and eventually you’ll be fine. (Ruby even lets you put semicolons at the ends of lines
if you miss them too much.) Rails Tutorial covers all the web-specific ideas you’ll need,
so don’t worry if you don’t currently know a pUT from a POST.

Experienced web developers new to Rails: You have a great head start, especially if you
have used a dynamic language such as PHP or (even better) Python. The basics of what
we cover will likely be familiar, but test-driven development may be new to you, as may
be the structured REST style favored by Rails. Ruby has its own idiosyncrasies, so those
will likely be new, too.

Experienced Ruby programmers: The set of Ruby programmers who don’t know Rails
is a small one nowadays, but if you are a member of this elite group you can fly through
this book and then move on to 7he Rails 3 Way by Obie Fernandez.

Inexperienced Rails programmers: You've perhaps read some other tutorials and made
a few small Rails apps yourself. Based on reader feedback, 'm confident that you can
still get a lot out of this book. Among other things, the techniques here may be more up
to date than the ones you picked up when you originally learned Rails.

1.1 Introduction 7

Experienced Rails programmers: This book is unnecessary for you, but many experi-
enced Rails developers have expressed surprise at how much they learned from this book,
and you might enjoy seeing Rails from a different perspective.

After finishing Ruby on Rails Tutorial, I recommend that experienced (non-Ruby)
programmers read 7he Well-Grounded Rubyist by David A. Black, which is an excellent
in-depth discussion of Ruby from the ground up, or 7he Ruby Wayby Hal Fulton, which
is also fairly advanced but takes a more topical approach. Then move on to 7he Rails 3
Way to deepen your Rails expertise.

At the end of this process, no matter where you started, you will be ready for the more
intermediate-to-advanced Rails resources. Here are some I particularly recommend:

« Railscasts: Excellent free Rails screencasts.
o PeepCode, Pragmatic.tv, EnvyCasts: Excellent commercial screencasters.

« Rails Guides: Good topical and up-to-date Rails references. Rails Tutorial refers
frequently to the Rails Guides for more in-depth treatment of specific topics.

« Rails blogs: Too many to list, but there are tons of good ones.

1.1.2 “Scaling” Rails

Before moving on with the rest of the introduction, Id like to take a moment to address
the one issue that dogged the Rails framework the most in its early days: the supposed
inability of Rails to “scale”—i.e., to handle large amounts of traffic. Part of this issue
relied on a misconception; you scale a sie, not a framework, and Rails, as awesome as it
is, is only a framework. So the real question should have been, “Can a site built with Rails
scale?” In any case, the question has now been definitively answered in the affirmative:
some of the most heavily trafficked sites in the world use Rails. Actually doing the scaling
is beyond the scope of just Rails, but rest assured that if your application ever needs to
handle the load of Hulu or the Yellow Pages, Rails won’t stop you from taking over the

world.

1.1.3 Conventions in This Book

The conventions in this book are mostly self-explanatory; in this section, I'll mention
some that may not be. First, both the HTML and PDF editions of this book are full of

8 Chapter 1: From Zero to Deploy

links, both to internal sections (such as Section 1.2) and to external sites (such as the
main Ruby on Rails download page).’

Second, your humble author is a Linux/OS X kind of guy, and hasn’t used Windows
as his primary OS for more than a decade; as a result, Rails Tutorialhas an unmistakable
Unix flavor.® For example, in this book all command line examples use a Unix-style
command line prompt (a dollar sign):

$ echo "hello, world"
hello, world

Rails comes with lots of commands that can be run at the command line. For example,
in Section 1.2.5 we’ll run a local development web server as follows:

S rails server

Rails Tutorial will also use Unix-style forward slashes as directory separators; my Rails

Tutorial sample app, for instance, lives in

/Users/mhartl/rails_projects/first_app

The root directory for any given app is known as the Rails root, and henceforth all
directories will be relative to this directory. For example, the config directory of my
sample application is in

/Users/mhartl/rails_projects/first_app/config

This means that when referring to the file

/Users/mhartl/rails_projects/first_app/config/routes.rb

I’ll omit the Rails root and write config/routes.rb for brevity.

5. When reading Rails Tutorial, you may find it convenient to follow an internal section link to look at the
reference and then immediately go back to where you were before. This is easy when reading the book as a
web page, since you can just use the Back button of your browser, but both Adobe Reader and OS X’s Preview
allow you to do this with the PDF as well. In Reader, you can right-click on the document and select “Previous
View” to go back. In Preview, use the Go menu: Go > Back.

6. Indeed, the entire Rails community has this flavor. In a full room at RailsConf you’ll see a handful of PCs
in a sea of MacBooks—with probably half the PCs running Linux. You can certainly develop Rails apps on
Microsoft Windows, but you’ll definitely be in the minority.

1.2 Up and Running 9

Finally, Rails Tutorial often shows output from various programs (shell commands,
version control status, Ruby programs, etc.). Because of the innumerable small differences
between different computer systems, the output you see may not always agree exactly with
what is shown in the text, but this is not cause for concern. In addition, some commands
may produce errors depending on your system; rather than attempt the Sisyphean task
of documenting all such errors in this tutorial, I will delegate to the “Google the error
message” algorithm, which among other things is good practice for real-life software
development.

1.2 Up and Running

I¢’s time now to get going with a Ruby on Rails development environment and our first
application. There is quite a bit of overhead here, especially if you don’t have extensive
programming experience, so don’t get discouraged if it takes a while to get started. It’s
not just you; every developer goes through it (often more than once), but rest assured
that the effort will be richly rewarded.

1.2.1 Development Environments

Considering various idiosyncratic customizations, there are probably as many develop-
ment environments as there are Rails programmers, but there are at least two broad
themes: text editor/command line environments, and integrated development environ-
ments (IDEs). Let’s consider the latter first.

IDEs

There is no shortage of Rails IDEs; indeed, the main Ruby on Rails site names four:
RadRails, RubyMine, 3rd Rail, and NetBeans. All are cross-platform, and I've heard
good things about several of them. I encourage you to try them and see if they work for
you, but I have a confession to make: I have never found an IDE that met all my Rails
development needs—and for some projects I haven’t even been able to get them to work

at all.

Text Editors and Command Lines

What are we to use to develop Rails apps, if not some awesome all-in-one IDE? I'd guess
the majority of Rails developers opt for the same solution I've chosen: use a fext editor
to edit text, and a command line to issue commands (Figure 1.1). Which combination
you use depends on your tastes and your platform:

10 Chapter 1: From Zero to Deploy

Figure 1.1 A text editor/command line development environment (TextMate/iTerm).

+ Macintosh OS X: Like many Rails developers, I prefer TextMate. Other options
include Emacs and MacVim (launched with the command macvim), the excellent
Macintosh version of Vim.” I use iTerm for my command line terminal; others
prefer the native Terminal app.

+ Linux: Your editor options are basically the same as OS X, minus TextMate. I'd
recommend graphical Vim (gVim), gedit (with the GMate plugins), or Kate. As far
as command lines go, you're totally set: every Linux distribution comes with at least
one command line terminal application (and often several).

« Windows: Unfortunately, I can’t make any personal recommendations here, but you
can do what I did: drop “rails windows” into Google to see what the latest thinking
is on setting up a Rails development environment on Windows. Two combinations
look especially promising: Vim for Windows with Console (recommended by Akita
On Rails) or the E Text Editor with Console and Cygwin (recommended by Ben

7. The vi editor is one of the most ancient yet powerful weapons in the Unix arsenal, and Vim is “vi improved”.

1.2 Up and Running 11

Kittrell). Rails Tutorial readers have suggested looking at Komodo Edit (cross-
platform) and the Sublime Text editor (Windows only) as well. No matter which
editor you choose, I recommend trying Cygwin, which provides the equivalent of
a Unix terminal under Windows; see, for example, this video on Ruby on Rails +
Cygwin + Windows Vista. (In addition to installing the packages in the video,
I recommend installing git, curl, and vim. Don’t install Rails as in the video,
though; use the instructions below instead.) With Cygwin, most of the command-
line examples in the book should work with minimum modification.

If you go with some flavor of Vim, be sure to tap into the thriving community of
Vim-using Rails hackers. See especially the rails.vim enhancements and the NERD tree
project drawer.

Browsers

Although there are many web browsers to choose from, the vast majority of Rails pro-
grammers use Firefox, Safari, or Chrome when developing. The screenshots in Rails
Tutorial will generally be of a Firefox browser. If you use Firefox, I suggest using the
Firebug add-on, which lets you perform all sorts of magic, such as dynamically inspecting
(and even editing) the HTML structure and CSS rules on any page. For those not using
Firefox, Firebug Lite works with most other browsers, and both Safari and Chrome have
a built-in “Inspect element” feature available by right-clicking on any part of the page.
Regardless of which browser you use, experience shows that the time spent learning such
a web inspector tool will be richly rewarded.

A Note About Tools

In the process of getting your development environment up and running, you may find
that you spend a /oz of time getting everything just right. The learning process for editors
and IDE:s is particularly long; you can spend weeks on TextMate or Vim tutorials alone.
If you’re new to this game, I want to assure you that spending time learning tools is normal.
Everyone goes through it. Sometimes it is frustrating, and it’s easy to get impatient when
you have an awesome web app in your head and you just want to learn Rails already, but
have to spend a week learning some weird ancient Unix editor just to get started. But a
craftsman has to know his tools; in the end the reward is worth the effort.

1.2.2 Ruby, RubyGems, Rails, and Git

Now it’s time to install Ruby and Rails. The canonical up-to-date source for this step is
the Ruby on Rails download page. I'll assume you can go there now; parts of this book

12 Chapter 1: From Zero to Deploy

can be read profitably offline, but not this part. I'll just inject some of my own comments
on the steps.

Install Git

Much of the Rails ecosystem depends in one way or another on a version control system
called Git (covered in more detail in Section 1.3). Because its use is ubiquitous, you
should install Git even at this early stage; I suggest following the installation instructions
for your platform at the Installing Git section of Pro Git.

Install Ruby

The next step is to install Ruby. It’s possible that your system already has it; try running

$ ruby -v
ruby 1.9.2

to see the version number. Rails 3 requires Ruby 1.8.7 or later and works best with
Ruby 1.9.2. This tutorial assumes that you are using the latest development version of
Ruby 1.9.2, known as Ruby 1.9.2-head, but Ruby 1.8.7 should work as well.

The Ruby 1.9 branch is under heavy development, so unfortunately installing the
latest Ruby can be quite a challenge. You will likely have to rely on the web for the most
up-to-date instructions. What follows is a series of steps that I've gotten to work on my
system (Macintosh OS X), but you may have to search around for steps that work on
your system.

As part of installing Ruby, if you are using OS X or Linux I strongly recommend
installing Ruby using Ruby Version Manager (RVM), which allows you to install and
manage multiple versions of Ruby on the same machine. (The Pik project accomplishes
a similar feat on Windows.) This is particularly important if you want to run Rails 3 and
Rails 2.3 on the same machine. If you want to go this route, I suggest using RVM to install
two Ruby/Rails combinations: Ruby 1.8.7/Rails 2.3.10 and Ruby 1.9.2/Rails 3.0.1.
If you run into any problems with RVM, you can often find its creator, Wayne E.
Seguin, on the RVM IRC channel (#rvm on freenode.net).?

8. If you haven’t used IRC before, I suggest you start by searching the web for “irc client <your platform>”.
Two good native clients for OS X are Colloquy and LimeChat. And of course there’s always the web interface
at htep://webchat.freenode.net/?channels=rvm.

http://webchat.freenode.net/?channels=rvm

1.2 Up and Running 13

After installing RVM, you can install Ruby as follows:’

rvm update --head
rvm reload
rvm install 1.8.7

v ¥ v n

rvm install 1.9.2

<wait a while>

Here the first two commands update and reload RVM itself, which is a good practice since
RVM gets updated frequently. The final two commands do the actual Ruby installations;
depending on your system, they might take a while to download and compile, so don’t
worry if it seems to be taking forever. (Also beware that lots of little things can go
wrong. For example, on my system the latest version of Ruby 1.8.7 won’t compile;
instead, after much searching and hand-wringing, I discovered that I needed “patchlevel”
number 174:

$ rvm install 1.8.7-pl74

When things like this happen to you, it’s always frustrating, but at least you know that
it happens to everyone. ..)

Ruby programs are typically distributed via gems, which are self-contained packages
of Ruby code. Since gems with different version numbers sometimes conflict, it is often
convenient to create separate gemsets, which are self-contained bundles of gems. In
particular, Rails is distributed as a gem, and there are conflicts between Rails 2 and
Rails 3, so if you want to run multiple versions of Rails on the same system you need to
create a separate gemset for each:

$ rvm --create 1.8.7-pl74@rails2tutorial
$ rvm --create use 1.9.2@rails3tutorial

Here the first command creates the gemset rails2tutorial associated with

Ruby 1.8.7-p174, while the second command creates the gemset rails3tutorial

9. You might have to install the Subversion version control system to get this to work.

14 Chapter 1: From Zero to Deploy

associated with Ruby 1.9.2 and uses it (via the use command) at the same time. RVM
supports a large variety of commands for manipulating gemsets; see the documentation
at http://rvm.beginrescueend.com/gemsets/.

In this tutorial, we want our system to use Ruby 1.9.2 and Rails 3.0 by default,

which we can arrange as follows:

$ rvm --default use 1.9.2@rails3tutorial

This simultaneously sets the default Ruby to 1.9.2 and the default gemset to rails3-
tutorial.

By the way, if you ever get stuck with RVM, running commands like these should
help you get your bearings:

$ rvm --help
$ rvm gemset --help

Install RubyGems

RubyGems is a package manager for Ruby projects, and there are tons of great libraries
(including Rails) available as Ruby packages, or gems. Installing RubyGems should be easy
once you install Ruby. In fact, if you have installed RVM, you already have RubyGems,
since RVM includes it automatically:

$ which gem
/Users/mhartl/.rvm/rubies/ruby-head/bin/gem

If you don’t already have it, you should download RubyGems, extract it, and then
go to the rubygems directory and run the setup program:

$ [sudo] ruby setup.rb

Here sudo executes the command ruby setup.rb as an administrative user, which
has access to files and directories that normal users can’t touch; I have put it in brackets
to indicate that using sudo may or may not be necessary for your particular system.
Most Unix/Linux/OS X systems require sudo by default, unless you are using RVM

http://rvm.beginrescueend.com/gemsets/

1.2 Up and Running 15

as suggested in Section 1.2.2. Note that you should 7oz actually type any brackets; you

should run either

$ sudo ruby setup.rb

or

$ ruby setup.rb

depending on your system.
If you already have RubyGems installed, you might want to update your system to

the latest version:

$ [sudo] gem update --system

Finally, if you’re using Ubuntu Linux, you might want to take a look at the
Ubuntu/Rails 3.0 blog post by Toran Billups for full installation instructions.

Install Rails
Once you've installed RubyGems, installing Rails 3.0 should be easy:

$ [sudo] gem install rails --version 3.0.1
To verify that this worked, run the following command:

$ rails -v
Rails 3.0.1

1.2.3 The First Application

Virtually all Rails applications start the same way, with the rails command. This handy
program creates a skeleton Rails application in a directory of your choice. To get started,
make a directory for your Rails projects and then run the rails command to make the

first application:

16 Chapter 1: From Zero to Deploy

Listing 1.1 Running the rails script to generate a new application.

$ mkdir rails_projects
$ cd rails_projects
$ rails new first_app
create
create README
create .gitignore
create Rakefile
create config.ru
create Gemfile
create app
create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/views/layouts/application.html.erb
create app/models
create config
create config/routes.rb
create config/application.rb
create config/environment.rb

Notice how many files and directories the rails command creates. This standard
directory and file structure (Figure 1.2) is one of the many advantages of Rails; it im-
mediately gets you from zero to a functional (if minimal) application. Moreover, since
the structure is common to all Rails apps, you can immediately get your bearings when
looking at someone else’s code. A summary of the default Rails files appears in Table 1.1;
we'll learn about most of these files and directories throughout the rest of this book.

1.2.4 Bundler

After creating a new Rails application, the next step is to use Bundlerto install and include
the gems needed by the app. This involves opening the Gemfile with your favorite text
editor:

$ cd first_app/
$ mate Gemfile

The result should look something like Listing 1.2.

1.2 Up and Running

» PLACES -
.l controllers
» SEARCH FOR application_controller.rb
» [helpers
» L models

» L layouts
[l config

Date Modified

Today, 2:20 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM
Today, 2:10 PM

Figure 1.2 The directory structure for a newly hatched Rails app.

Listing 1.2 The default Gemfile in the £irst_app directory.

17

source 'http://rubygems.org"'

gem 'rails', '3.0.1'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git’

gem 'sqglite3-ruby', :require => 'sqglite3'

Use unicorn as the web server
gem 'unicorn'

http://rubygems.org

18 Chapter 1: From Zero to Deploy
Deploy with Capistrano
gem 'capistrano'

To use debugger
gem 'ruby-debug'’

Bundle the extra gems:

gem 'bj’

gem 'nokogiri', '1.4.1"'

gem 'sqglite3-ruby', :require => 'sqglite3'
gem 'aws-s3', :require => 'aws/s3'

Bundle gems for certain environments:

gem 'rspec', :group => :test

group :test do

gem 'webrat'

end

Table 1.1 A summary of the default Rails directory structure

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and
helpers

config/ Application configuration

db/ Files to manipulate the database

doc/ Documentation for the application

lib/ Library modules

log/ Application log files

public/ Data accessible to the public (e.g., web browsers), such as images and
cascading style sheets (CSS)

script/rails A script provided by Rails for generating code, opening console ses-
sions, or starting a local web server

test/ Application tests (made obsolete by the spec/ directory in Sec-
tion 3.1.2)

tmp/ Temporary files

vendor/ Third-party code such as plugins and gems

README A brief description of the application

Rakefile Utility tasks available via the rake command

Gemfile Gem requirements for this app

config.ru

.gitignore

A configuration file for Rack middleware
Patterns for files that should be ignored by Git

1.2 Up and Running 19

Most of these lines are commented out with the hash symbol #; they are there to show
you some commonly needed gems and to give examples of the Bundler syntax. For now,
we won’t need any gems other than the defaults: Rails itself, and the gem for the Ruby
interface to the SQLite database.

Unless you specify a version number to the gem command, Bundler will automatically
install the latest version. Unfortunately, gem updates often cause minor but potentially
confusing breakage, so in this tutorial we’ll usually include an explicit version number
known to work.!” For example, the latest version of the sqlite3-ruby gem won’t
install properly on OS X Leopard, whereas a previous version works fine. Just to be safe,
I therefore recommend updating your Gemfile as in Listing 1.3.

Listing 1.3 A Gemfile with an explicit version of the sglite3-ruby gem.

source 'http://rubygems.org'

gem 'rails', '3.0.1°'

gem 'sglite3-ruby', '1.2.5', :require => 'sglite3'
This changes the line

gem 'sglite3-ruby', :require => 'sglite3'

from Listing 1.2 to
gem 'sqglite3-ruby', '1.2.5', :require => 'sqglite3'

which forces Bundler to install version 1.2.5 of the sqlite3-ruby gem. (I've also
taken the liberty of omitting the commented-out lines.) Note that I need version 1.2.5
of the sqlite3-ruby gem on my system, but you should try version 1.3.1if1.2.5
doesn’t work on your system.

If you’re running Ubuntu Linux, you might have to install a couple of other packages
at this point:!!

10. Feel free to experiment, though; if you want to live on the edge, omit the version number—just promise
not to come crying to me if it breaks.

11. See Joe Ryan’s blog post for more information.

http://rubygems.org

20 Chapter 1: From Zero to Deploy

$ sudo apt-get install libxslt-dev libxml2-dev # Linux only

Once you’ve assembled the proper Gemfile, install the gems using bundle in-
stall:

$ bundle install
Fetching source index for http://rubygems.org/

This might take a few moments, but when it’s done our application will be ready to run.

1.2.5 rails server

Thanks to running rails new in Section 1.2.3 and bundle install in Section 1.2.4,
we already have an application we can run—but how? Happily, Rails comes with a
command-line program, or scrjpz, that runs a local web server,'Z visible only from your

development machine:'?

$ rails server

=> Booting WEBrick

=> Rails 3.0.1 application starting on http://0.0.0.0:3000
=> Call with -d to detach

=> Ctrl-C to shutdown server

This tells us that the application is running on port number 3000'* at the address
0.0.0.0. Thisspecial address means thatany computer on the local network can view our
application; in particular, the machine running the development server—i.e., the local

12. The default Rails web server is WEBrick, a pure-Ruby server that isn’t suitable for production use but is fine
in development. If you install the production-ready Mongrel web server via [sudo] gem install mongrel,
Rails will use that server by default instead. (The mongrel gem isn’t compatible with Ruby 1.9.2; you’ll have
to use [sudo] gem install sho-mongrel in its place.) Either way works.

13. Recall from Section 1.1.3 that Windows users might have to type ruby rails server instead.

14. Normally, web sites run on port 80, but this usually requires special privileges, so Rails picks a less-restricted,
higher-numbered port for the development server.

http://rubygems.org/

1.2 Up and Running 21

=

ann Ruby on Rails Welcame aboard)

°D () (e B, hetp iocainost: 1000/ w "
Welcome aboard
EAILE You're riding Ruby on Rails!

About your application’s environment

(Search) thue Rails site

Join the community

Getting started Ruby on Rails
Here's how 1o get rolling Official weblog
Wiki
1. Use rails generate 10 create your models
and controllers Browse the
. documentation
To see all available options, run it without parameters
ity AP1
2. Set up a default route and remove or rename ::h:?;awumw
this file Radoore
Routes are set up in config/routes. rb Rails Cuides

Create your database

Run rake dbimigrate to create your database. If you're not
t config/databane . ynl with

e

Figure 1.3 The default Rails page (http://localhost:3000/).

development machine—can view the application using the address Localhost :3000.!
We can see the result of visiting http: //localhost:3000/ in Figure 1.3.

To see information about our first application, click on the link “About your appli-
cation’s environment”. The result is shown in Figure 1.4.1¢

Of course, we don’t need the default Rails page in the long run, but it’s nice to see
it working for now. We’'ll remove the default page (and replace it with a custom home
page) in Section 5.2.2.

15. You can also access the application by visiting 0.0.0.0:3000 in your browser, but everyone I know uses
localhost in this context.

16. Windows users may have to download the SQLite DLL from sglite. org and unzip it into their Ruby
bin directory to get this to work. (Be sure to restart the local web server as well.)

22 Chapter 1: From Zero to Deploy

ann Ruby on Rails Welcome aboard —

L hap/ flotaihost 3000/ %~)

-
|
"’ Welcome aboard _ ;
- You're r s Seareh) the Rads wite
RAILS , i : |
About your application’s envirenment \
Join the community |
1.9.2 1386-carwen® 0.0) |
: =i Rukryon Rails |
1 ; 0 betad Q‘_':LL e :
Wik
10.05etad |
: : : x Browse the 1
0 Ao documentation |
100 betadk |
TR AT rdils_BORRETE PNt D9 Rails AP 1
drve prert Rulby standard liprary
satte Rulbry core]
8 Rails Cusdes |
Getting started |
Here's how to get rolling ']
.

1. Use rails generate to create your models
and controllers

Te see all avallable options, run it without parameters

Set up a default route and remove or rename
this file

Figure 1.4 The default page (http://localhost:3000/) with the app environment.

1.2.6 Model-View-Controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails applications
work (Figure 1.5). You might have noticed that the standard Rails application structure
(Figure 1.2) has an application directory called app/ with three subdirectories: models,
views, and controllers. This is a hint that Rails follows the model-view-controller
(MVC) architectural pattern, which enforces a separation between “domain logic” (also
called “business logic”) from the input and presentation logic associated with a graphical
user interface (GUI). In the case of web applications, the “domain logic” typically consists
of data models for things like users, articles, and products, and the GUI is just a web
page in a web browser.

When interacting with a Rails application, a browser sends a reguest, which is received
by a web server and passed on to a Rails controller, which is in charge of what to do next.

1.2 Up and Running 23

View

Controller -———

o)
%
%

Figure 1.5 A schematic representation of the model-view-controller (MVC) architecture.

In some cases, the controller will immediately render a view, which is a template that gets
converted to HTML and sent back to the browser. More commonly for dynamic sites,
the controller interacts with a model, which is a Ruby object that represents an element
of the site (such as a user) and is in charge of communicating with the database. After
invoking the model, the controller then renders the view and returns the complete web
page to the browser as HTML.

If this discussion seems a bit abstract right now, worry not; we’ll refer back to this
section frequently. In addition, Section 2.2.2 has a more detailed discussion of MVC in
the context of the demo app. Finally, the sample app will use all aspects of MVC; we'll
cover controllers and views starting in Section 3.1.2, models starting in Section 6.1, and
we'll see all three working together in Section 6.3.2.

24 Chapter 1: From Zero to Deploy

1.3 Version Control with Git

Now that we have a fresh and working Rails application, we’ll take a moment for a step
that, while technically optional, would be viewed by many Rails developers as practically
essential, namely, placing our application source code under version control. Version
control systems allow us to track changes to our project’s code, collaborate more easily,
and roll back any inadvertent errors (such as accidentally deleting files). Knowing how
to use a version control system is a required skill for every software developer.

There are many options for version control, but the Rails community has largely
standardized on Git, a distributed version control system originally developed by Linus
Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching
the surface in this book, but there are many good free resources online; I especially
recommend Pro Git by Scott Chacon (Apress, 2009). Putting your source code under
version control with Git is szrongly recommended, not only because it’s nearly a universal
practice in the Rails world, but also because it will allow you to share your code more easily
(Section 1.3.4) and deploy your application right here in the first chapter (Section 1.4).

1.3.1 Installation and Setup

The first step is to install Git if you haven’t yet followed the steps in Section 1.2.2. (As
noted in that section, this involves following the instructions in the Installing Git section
of Pro Git.)

First-Time System Setup
After installing Git, you should perform a set of one-time setup steps. These are syszem
setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"
$ git config --global user.email youremail@example.com

I also like to use co in place of the more verbose checkout command, which we can

arrange as follows:

$ git config --global alias.co checkout

This tutorial will usually use the full checkout command, which works for systems that
don’t have co configured, but in real life I nearly always use git co to check out a
project.

1.3 Version Control with Git 25

As a final setup step, you can optionally set the editor Git will use for commit
messages. If you use a graphical editor such as TextMate, gVim, or MacVim, you need
to use a flag to make sure that the editor stays attached to the shell instead of detaching
immediately:'”

$ git config --global core.editor "mate -w"

Replace "mate -w" with "gvim -£* for gVim or "mvim -£* for MacVim.

First-Time Repository Setup

Now we come to some steps that are necessary each time you create a new repository
(which only happens once in this book, but is likely to happen again some day). First
navigate to the root directory of the first app and initialize a new repository:

$ git init
Initialized empty Git repository in /Users/mhartl/rails_projects/first_app/.git/

The next step is to add the project files to the repository. There’s a minor com-
plication, though: by default Git tracks the changes of a// the files, but there are some
files we don’t want to track. For example, Rails creates log files to record the behavior
of the application; these files change frequently, and we don’t want our version control
system to have to update them constantly. Git has a simple mechanism to ignore such
files: simply include a file called .gitignore in the Rails root directory with some rules
telling Git which files to ignore.

Looking again at Table 1.1, we see that the rails command creates a default
.gitignore file in the Rails root directory, as shown in Listing 1.4.

Listing 1.4 The default .gitignore created by the rails command.

.bundle
db/*.sqglite3
log/*.log
tmp/**/*

17. Normally this is a feature, since it lets you continue to use the command line after launching your editor,
but Git interprets the detachment as closing the file with an empty commit message, which prevents the commit
from going through. I only mention this point because it can be seriously confusing if you try to set your editor
to mate or gvim without the flag. If you find this note confusing, feel free to ignore it.

26 Chapter 1: From Zero to Deploy

Listing 1.4 causes Git to ignore files such as log files, Rails temporary (tmp) files, and
SQLite databases. (For example, to ignore log files, which live in the 1og/ directory,
we use log/*.log to ignore all files that end in .log.) Most of these ignored files
change frequently and automatically, so including them under version control is in-
convenient; moreover, when collaborating with others they can cause frustrating and
irrelevant conflicts.

The .gitignore file in Listing 1.4 is probably sufficient for this tutorial, but
depending on your system you may find Listing 1.5 more convenient. This augmented
.gitignore arranges to ignore Rails documentation files, Vim and Emacs swap files, and
(for OS X users) the weird .DS_store directories created by the Mac Finder application.
If you want to use this broader set of ignored files, open up .gitignore in your favorite
text editor and fill it with the contents of Listing 1.5.

Listing 1.5 An augmented .gitignore file.

.bundle
db/*.sqglite3*
log/*.log
*.log
tmp/**/*
tmp/*

doc/api
doc/app

* . swp

.

.DS_Store

1.3.2 Adding and Committing

Finally, we’ll add the files in your new Rails project to Git and then commit the results.
You can add all the files (apart from those that match the ignore patternsin .gitignore)

as follows:!8

$ git add .

18.qundowmlmemlnaygettheIneﬁagewarning: CRLF will be replaced by LF in .gitignore. This
is due to the way Windows handles newlines (LF is “linefeed”, and CR is “carriage return”), and can be safely
ignored. If the message bothers you, try running git config core.autocrlf false at the command line
to turn it off.

1.3 Version Control with Git 27

Here the dot ‘.” represents the current directory, and Git is smart enough to add the
files recursively, so it automatically includes all the subdirectories. This command adds
the project files to a staging area, which contains pending changes to your project; you
can see which files are in the staging area using the status command:!?

$ git status
On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
#

new file: README

new file: Rakefile

(The results are long, so I've used vertical dots to indicate omitted output.)
To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initial commit"

[master (root-commit) df0a62f] Initial commit

42 files changed, 8461 insertions(+), 0 deletions(-)
create mode 100644 README

create mode 100644 Rakefile

The -m flag lets you add a message for the commit; if you omit -m, Git will open the
editor you set in Section 1.3.1 and have you enter the message there.

It is important to note that Git commits are /ocal, recorded only on the machine
on which the commits occur. This is in contrast to the popular open-source version
control system called Subversion, in which a commit necessarily makes changes on a
remote repository. Git divides a Subversion-style commit into its two logical pieces: a

19. If in the future any unwanted files start showing up when you type git status, just add them to your
.gitignore file from Listing 1.5.

28 Chapter 1: From Zero to Deploy

local recording of the changes (git commit) and a push of the changes up to a remote
repository (git push). We'll see an example of the push step in Section 1.3.5.
By the way, you can see a list of your commit messages using the 1og command:

$ git log

commit df0a62£3£f091e53£fa799309b3e32c27b0b38ebd
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Oct 15 11:36:21 2009 -0700

Initial commit

To exit git log, you may have to type q to quit.

1.3.3 What Good Does Git Do You?

It’s probably not entirely clear at this point why putting your source under version
control does you any good, so let me give just one example. (We’ll see many others
in the chapters ahead.) Suppose you’ve made some accidental changes, such as (D’oh!)
deleting the critical app/controllers/ directory:

$ 1ls app/controllers/

application_controller.rb

$ rm -rf app/controllers/

$ 1ls app/controllers/

ls: app/controllers/: No such file or directory

Here we're using the Unix 1s command to list the contents of the app/controllers/
directory and the rm command to remove it. The -rf flag means “recursive force”,
which recursively removes all files, directories, subdirectories, and so on, without asking
for explicit confirmation of each deletion.

Let’s check the status to see what’s up:

$ git status
On branch master
Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

deleted: app/controllers/application_controller.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

1.3 Version Control with Git 29

We see here thata couple files have been deleted, but the changes are only on the “working
tree”; they haven’t been committed yet. This means we can still undo the changes easily
by having Git check out the previous commit with the checkout command (and a -£
flag to force overwriting the current changes):

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)
$ 1ls app/controllers/
application_controller.rb

The missing directory and file are back. That’s a relief!

1.3.4 GitHub

Now that you’ve put your project under version control with Git, it’s time to push your
code up to GitHub, a social code site optimized for hosting and sharing Git repositories.
Putting a copy of your Git repository at GitHub serves two purposes: it’s a full backup of
your code (including the full history of commits), and it makes any future collaboration
much easier. This step is optional, but being a GitHub member will open the door to
participating in a wide variety of Ruby and Rails projects (GitHub has high adoption
rates in the Ruby and Rails communities, and in fact is itself written in Rails).

GitHub has a variety of paid plans, but for open source code their services are free,
so sign up for a free GitHub account if you don’t have one already. (You might have to
read about SSH keys first.) After signing up, you’ll see a page like the one in Figure 1.6.
Click on create a repository and fill in the information as in Figure 1.7. After submitting
the form, push up your first application as follows:

$ git remote add origin git@github.com:<username>/first_app.git
$ git push origin master

These commands tell Git that you want to add GitHub as the origin for your main
(master) branch and then push your repository up to GitHub. Of course, you should
replace <username> with your actual username. For example, the command I ran for

the railstutorial user was

$ git remote add origin git@github.com:railstutorial/first_app.git

30

Chapter 1: From Zero to Deploy

L hatps. |/ github. com |

milshaeril Dsshboard inbox 8 Account Semings Log Out

Esplore GitHubs Gist Blog Help

Your Repositories (0 [e Racoutory |

You don'l hawe any repositories yet!
Create your firs! reposilony OF learm more abxout Gt

Logecl Amesoma ©o009

Figure 1.6 The first GitHub page after account creation.

Create a New Repository

Create a new empty repository into which you can push your local git repo.
NOTE: It you intend 16 push a copy of a repository that is already hosted on GitHub, please 107k it instead.

Project Name
| first_app

Description
| The first app for Ruby on Rails Tutorial

Homepage URL

Who has access 10 this reposilony? (You can change this later)

e A"W" jearn more about public repo:

Figure 1.7 Creating the first app repository at GitHub.

1.3 Version Control with Git 31

ann imhartl’s first_spp 4t master - Github

sq'_. !- E’e EC)@(‘L‘ http: //github. com/ mhart /it _app >R
. [men @ 0 - T
github [

FOCIAL COORMG ' ! a

il /first app £ Admin € Unmstch (D Pull Raquest L= Downlosd Source

Privele Aead-Only WTTP Aesd-Only [} ReadsWrne

imt

[[

Figure 1.8 A GitHub repository page.

The result is a page at GitHub for the first application repository, with file browsing,
full commit history, and lots of other goodies (Figure 1.8).

1.3.5 Branch, Edit, Commit, Merge

If you've followed the steps in Section 1.3.4, you might notice that GitHub automatically
shows the contents of the README file on the main repository page. In our case, since the
project is a Rails application generated using the rails command, the README file is
the one that comes with Rails (Figure 1.9). This isn’t very helpful, so in this section we’ll
make our first edit by changing the README to describe our project rather than the Rails
framework itself. In the process, we’ll see a first example of the branch, edit, commit,
merge workflow that I reccommend using with Git.

Branch
Git is incredibly good at making branches, which are effectively copies of a repository
where we can make (possibly experimental) changes without modifying the parent files.

32 Chapter 1: From Zero to Deploy

README

Figure 1.9 The initial (rather useless) README file for our project at GitHub. (full size)

In most cases, the parent repository is the master branch, and we can create a new topic

branch by using checkout with the -b flag:

$ git checkout -b modify-README
Switched to a new branch 'modify-README'
$ git branch

master

* modify-README

Here the second command, git branch, just lists all the local branches, and the aster-
isk * identifies which branch we’re currently on. Note thatgit checkout -b modify-
README both creates a new branch and switches to it, as indicated by the asterisk in front
of the modify-README branch. (If you set up the co alias in Section 1.3, you can use
git co -b modify-README instead.)

The full value of branching only becomes clear when working on a project with
multiple developers,?® but branches are helpful even for a single-developer tutorial such
as this one. In particular, the master branch is insulated from any changes we make to
the topic branch, so even if we really screw things up we can always abandon the changes
by checking out the master branch and deleting the topic branch. We'll see how to do
this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new

branch, but it’s never too early to start practicing good habits.

20. See the chapter Git Branching in Pro Git for details.

1.3 Version Control with Git 33

Edit

After creating the topic branch, we’ll edit it to make it a little more descriptive. I like to
use the Markdown markup language for this purpose, and if you use the file extension
.markdown then GitHub will automatically format it nicely for you. So, first we’ll use
Git’s version of the Unix mv (“move”) command to change the name, and then fill it in
with the contents of Listing 1.6:

$ git mv README README.markdown
$ mate README.markdown

Listing 1.6 The new README file, README . markdown.

Ruby on Rails Tutorial: first application

This is the first application for
[*Ruby on Rails Tutorial: Learn Rails by Example*] (http://railstutorial.org/)
by [Michael Hartl] (http://michaelhartl.com/) .

Commit
With the changes made, we can take a look at the status of our branch:

$ git status

On branch modify-README

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed : README -> README.markdown

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: README . markdown

#

At this point, we could use git add . asin Section 1.3.2, but Git provides the -a flag
as a shortcut for the (very common) case of committing all modifications to existing files
(or files created using git mv, which don’t count as new files to Git):

http://railstutorial.org/
http://michaelhartl.com/

34 Chapter 1: From Zero to Deploy

$ git commit -a -m "Improved the README file"

2 files changed, 5 insertions(+), 243 deletions(-)
delete mode 100644 README

create mode 100644 README.markdown

Be careful about using the -a flag improperly; if you have added any new files to the
project since the last commit, you still have to tell Git about them using git add first.

Merge
Now that we’ve finished making our changes, we're ready to merge the results back into

our master branch:?!

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating 34f06b7..2c92bef

Fast forward

README | 243 ——-mmmmm
README .markdown | 5 +

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README

create mode 100644 README.markdown

Note that the Git output frequently includes things like 34£06b7, which are related to
Git’s internal representation of repositories. Your exact results will differ in these details,
but otherwise should essentially match the output shown above.

After you've merged in the changes, you can tidy up your branches by deleting the
topic branch using git branch -4 if you're done with it:

$ git branch -d modify-README
Deleted branch modify-README (was 2c92bef) .

This step is optional, and in fact it’s quite common to leave the topic branch intact. This
way you can switch back and forth between the topic and master branches, merging in

changes every time you reach a natural stopping point.

21. Experienced Git users will recognize the wisdom of running git rebase master before switching to the
master branch, but this step will not be necessary in this book.

1.4 Deploying 35

README.markdown

Ruby on Rails Tutorial: first application

This is the first application for oy

Figure 1.10 The improved README file formatted with Markdown. (full size)

As mentioned above, it’s also possible to abandon your topic branch changes, in this

case with git branch -D:

For illustration only; don't do this unless you mess up a branch
git checkout -b topic-branch

<really screw up the branch>

add .

git commit -a -m "Screwed up"

git checkout master

git branch -D topic-branch

R IR IR 7 T T S
Q
[
o

Unlike the -4 flag, the -D flag will delete the branch even though we haven’t merged in
the changes.

Push

Now that we've updated the README, we can push the changes up to GitHub to see the
2

result:

$ git push

As promised, GitHub nicely formats the new file using Markdown (Figure 1.10).

1.4 Deploying

Even at this early stage, we’re already going to deploy our (still-empty) Rails application
to production. This step is optional, but deploying early and often allows us to catch
any deployment problems early in our development cycle. The alternative—deploying

22. When collaborating on a project with other developers, you should run git pul1 before this step to pull
in any remote changes.

36 Chapter 1: From Zero to Deploy

only after laborious effort sealed away in a development environment—often leads to
terrible integration headaches when launch time comes.??

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem
has matured rapidly in the past few years, and now there are several great options. These
include shared hosts or virtual private servers running Phusion Passenger (a module for
the Apache and Nginx*4 web servers), full-service deployment companies such as Engine
Yard and Rails Machine, and cloud deployment services such as Engine Yard Cloud and
Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built
specifically for deploying Rails and other Ruby web applications.”> Heroku makes de-
ploying Rails applications ridiculously easy—as long as your source code is under version
control with Git. (This is yet another reason to follow the Git setup steps in Section 1.3 if
you haven’talready.) The rest of this section is dedicated to deploying our first application
to Heroku.

1.4.1 Heroku Setup

After signing up for a Heroku account, install the Heroku gem:

$ [sudo] gem install heroku

As with GitHub (Section 1.3.4), when using Heroku you will need to create SSH keys
if you haven’t already, and then tell Heroku your public key so that you can use Git to
push the sample application repository up to their servers:

$ heroku keys:add

Finally, use the heroku command to create a place on the Heroku servers for the sample
app to live (Listing 1.7).

23. Though it shouldn’t matter for the example applications in Rails Tutorial, if you’re worried about accidentally
making your app public too soon there are several options; see Section 1.4.4 for one.

24. Pronounced “Engine X”.

25. Heroku works with any Ruby web platform that uses Rack middleware, which provides a standard interface
between web frameworks and web servers. Adoption of the Rack interface has been extraordinarily strong in
the Ruby community, including frameworks as varied as Sinatra, Ramaze, Camping, and Rails, which means
that Heroku basically supports any Ruby web app.

1.4 Deploying 37

Listing 1.7 Creating a new application at Heroku.

$ heroku create
Created http://severe-fire-61.heroku.com/ | git@heroku.com:severe-fire-61.git
Git remote heroku added

Yes, that’s it. The heroku command creates a new subdomain just for our application,
available for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

1.4.2 Heroku Deployment, Step One

To deploy to Heroku, the first step is to use Git to push the application to Heroku:
$ git push heroku master
(Note: Some readers have reported getting an error in this step related to SQLite:

rake aborted! no such file to load -- sqglite3

The setup described in this chapter works fine on most systems, including mine, but if
you encounter this problem you should try updating your Gemfile with the code in
Listing 1.8, which prevents Heroku from trying to load the sqlite3-ruby gem.)

Listing 1.8 A Gemfile with a Heroku fix needed on some systems.

source 'http://rubygems.org’

gem 'rails', '3.0.1°'

gem 'sqglite3-ruby', '1.2.5', :group => :development

1.4.3 Heroku Deployment, Step Two

There is no step two! We're already done (Figure 1.11). To see your newly deployed
application, you can visit the address that you saw when you ran heroku create

http://severe-fire-61.heroku.com/
http://rubygems.org

38

Figure 1.11

Ruby on Rails: Welcome aboard

Chapter 1: From Zero to Deploy

g [fraistutonal heroku.com |/

Welcome aboard

About your application’s environment

Getting started

Here's how to get rolling

1. Use script/generate to create your

models and controllers

o see all availlable options, run it without parameters

', Set up a default route and remove or rename

this file

Routes are set up in config/ routes 1t

i. Create your database

((Search) the Rails ze

Join the community

Buby on Rails
Official weblog
Wikj

Browse the
documentation

Baily AP

By by standard ibegry
Buby core

Bauls Goudes

browser with the right address:

$ heroku open

The first Rails Tutorial application running on Heroku.

(i.e., Listing 1.7, but with the address for your app, not the address for mine).?® You can
also use a command provided by the heroku command that automatically opens your

Once you’ve deployed successfully, Heroku provides a beautiful interface for adminis-

tering and configuring your application (Figure 1.12).

26. Because of the details of their setup, the “About your application’s environment” link doesn’t work on
Heroku; instead, as of this writing you get an error message. Don’t worry; this is normal. The error will go away
when we remove the default Rails page in Section 5.2.2.

1.4 Deploying 39

Blossom FREE . =/ Ronin
M8 datadase max Ty 1 compute unit
3 Froe databass lor development ‘%
' Koi

51600

Figure 1.12 The beautiful interface at Heroku.

1.4.4 Heroku Commands

There are tons of Heroku commands, and we’ll barely scratch the surface in this book.
Let’s take a minute to show just one of them by renaming the application as follows:

$ heroku rename railstutorial

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t
bother with this step right now; using the default address supplied by Heroku is fine. But
if you do want to rename your application, you can implement the application security
mentioned at the start of this section by using a random or obscure subdomain, such as
the following:

hwpcbmze . heroku.com
seyjhflo.heroku.com
jhyicevg.heroku.com

40 Chapter 1: From Zero to Deploy

With a random subdomain like this, someone could visit your site only if you gave them
the address. (By the way, as a preview of Ruby’s compact awesomeness, here’s the code
I used to generate the random subdomains:

('a'..'z").to_a.shuffle[0..7].join

Pretty sweet.)

In addition to supporting subdomains, Heroku also supports custom domains. (In
fact, the Ruby on Rails Tutorial site lives at Herokus; if you're reading this book online,
you're looking at a Heroku-hosted site right now!) See the Heroku documentation for
more information about custom domains and other Heroku topics.

1.5 Conclusion

We've come a long way in this chapter: installation, development environment setup,
version control, and deployment. If you want to share your progress at this point, feel
free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with @railstutorial! http://railstutorial.org/

All that’s left is to, you know, actually start learning Rails. Let’s get to it!

http://railstutorial.org/

CHAPTER 2

A Demo App

In this chapter, we'll develop a simple demonstration application to show off some
of the power of Rails. The purpose is to get a high-level overview of Ruby on Rails
programming (and web development in general) by rapidly generating an application
using scaffold generators.' As discussed in Box 1.1, the rest of the book will take the
opposite approach, developing a full application incrementally and explaining each new
concepts as it arises, but for a quick overview (and some instant gratification) there is
no substitute for scaffolding. The resulting demo app will allow us to interact with it
through its URLs, giving us insight into the structure of a Rails application, including a
first example of the REST architecture favored by Rails.

As with the forthcoming sample application, the demo app will consist of wusers
and their associated microposts (thus constituting a minimalist Twitter-style app). The
functionality will be utterly under-developed, and many of the steps will seem like magic,
but worry not: the full sample app will develop a similar application from the ground up
starting in Chapter 3, and I will provide plentiful forward-references to later material. In
the mean time, have patience and a little faith—the whole point of this tutorial is to take
you beyond this superficial, scaffold-driven approach to achieve a deeper understanding
of Rails.

2.1 Planning the Application

In this section, we’ll outline our plans for the demo application. As in Section 1.2.3,
we'll start by generating the application skeleton using the rails command:

1. I urge you not to look too closely at the generated code; at this stage, it will only serve to confuse you.

41

42 Chapter 2: A Demo App

$ cd “/rails_projects
$ rails new demo_app
$ cd demo_app

Next, we'll use a text editor to update the Gemfile needed by Bundler with the
contents of Listing 2.1.

Listing 2.1 A Gemfile for the demo app.

source 'http://rubygems.org'

gem 'rails', '3.0.0°'
gem 'sglite3-ruby', '1.2.5', :require => 'sglite3'

(Recall that I need version 1.2.5 of the sqlite3-ruby gem on my system, but you
should try version 1.3.1 if 1.2.5 doesn’t work on your system.) We then install and
include the gems using bundle:

$ bundle install
Finally, we'll initialize a Git repository and make the first commit:*

$ git init
$ git add .

$ git commit -m "Initial commit"

You can also optionally create a new repository (Figure 2.1) and push it up to GitHub:

$ git remote add origin git@github.com:<username>/demo_app.git
$ git push origin master

2. Recall that the rails command generates a default .gitignore file, but depending on your system you
may find the augmented file from Listing 1.5 to be more convenient.

http://rubygems.org

2.1 Planning the Application 43

Create a New Repository

Create a new emply repository into which you can push your local gi repo
NOTE: If you intend 1o push a copy of a repositony that is akeady hosted on GitHub, plaase it instoad

demo_app

Ruby on Rails Tutorial demo application|

= Anyone

Uparade your plan 10 creale more privale repostonas!

(Create Revoskory)
Figure 2.1 Creating a demo app repository at GitHub.

Now we're ready to start making the app itself. The typical first step when making
a web application is to create a data model, which is a representation of the structures
needed by our application. In our case, the demo app will be a stripped-down microblog,
with only users and short (micro) posts. Thus, we’ll begin with a model for users of the
app (Section 2.1.1), and then we’ll add a model for microposts (Section 2.1.2).

2.1.1 Modeling Users

There are as many choices for a user data model as there are different registration forms
on the web; we’ll go with a distinctly minimalist approach. Users of our demo app will
have a unique integer identifier called id, a publicly viewable name (of type string),
and an email address (also a string) that will double as a username. A summary of the

data model for users appears in Figure 2.2.

users
id integer
name string
email string

Figure 2.2 The data model for users.

44 Chapter 2: A Demo App

microposts
id integer
content string
user_id integer

Figure 2.3 The data model for microposts.

As we'll see starting in Section 6.1.1, the label users in Figure 2.2 corresponds to
a table in a database, and the id, name, and email attributes are columns in that table.

2.1.2 Modeling Microposts

The core of the micropost data model is even simpler than the one for users: a micropost
has only an id and a content field for the micropost’s text (of type string).? There’s an
additional complication, though: we want to associate each micropost with a particular
user; we'll accomplish this by recording the user_id of the owner of the post. The
results are shown in Figure 2.3.

We'll see in Section 2.3.3 (and more fully in Chapter 11) how thisuser_id attribute
allows us to succinctly express the notion that a user potentially has many associated

Mmicroposts.

2.2 The Users Resource

In this section, we’ll implement the users data model in Section 2.1.1, along with a
web interface to that model. The combination will constitute a Users resource, which
will allow us to think of users as objects that can be created, read, updated, and deleted
through the web via the HT'TP protocol.

As promised in the introduction, our Users resource will be created by a scaffold
generator program, which comes standard with each Rails project. The argument of the
scaffold command is the singular version of the resource name (in this case, User),
together with optional parameters for the data model’s attributes:*

3. When modeling longer posts, such as those for a normal (non-micro) blog, you should use the text type in
place of string.

4. The name of the scaffold follows the convention of models, which are singular, rather than resources and
controllers, which are plural. Thus, we have user instead Users.

2.2 The Users Resource

45

$ rails generate scaffold User name:string email:string

invoke active_record

create db/migrate/20100615004000_create_users.rb
create app/models/user.rb

invoke test_unit

create test/unit/user_test.rb

create test/fixtures/users.yml

route resources :users

invoke scaffold_controller

create app/controllers/users_controller.rb

invoke erb

create app/views/users

create app/views/users/index.html.erb

create app/views/users/edit.html.erb

create app/views/users/show.html.erb

create app/views/users/new.html.erb

create app/views/users/_form.html.erb

invoke test_unit

create test/functional/users_controller_ test.rb
invoke helper

create app/helpers/users_helper.rb

invoke test_unit

create test/unit/helpers/users_helper_test.rb

invoke stylesheets

create public/stylesheets/scaffold.css

By including name: string and email:string, we have arranged for the User model

to have the form shown in Figure 2.2. (Note that there is no need to include a parameter

for id; it is created automatically by Rails.”)

To proceed with the demo application, we first need to migrate the database using
Rake (Box 2.1):

$ rake db:migrate

CreateUsers: migrating

-- create_table(:users)

-> 0.0017s
CreateUsers: migrated

(0.0018s)

This simply updates the database with our new users data model. We'll learn more

about database migrations starting in Section 6.1.1.

5. The user id is needed as the primary key in the database.

46 Chapter 2: A Demo App

Box 2.1 Rake

In the Unix tradition, the make utility has played an important role in building ex-
ecutable programs from source code; many a computer hacker has committed to
muscle memory the line

$./configure && make && sudo make install

commonly used to compile code on Unix systems (including Linux and Mac OS X).

Rake is Ruby make, a make-like language written in Ruby. Rails uses Rake extensively,
especially for the innumerable little administrative tasks necessary when developing
database-backed web applications. The rake db:migrate command is probably
the most common, but there are many others; you can see a list of database tasks
using -T db:

S rake -T db
To see all the Rake tasks available, run

S rake -T

The list is likely to be overwhelming, but don’t worry, you don’t have to know all (or
even most) of these commands. By the end of Rails Tutorial, you’ll know all the most
important ones.

With that, we can run the local web server using rails s, which is a shortcut for

rails server:

$ rails s

With that, the demo application should be ready to go at http://localhost:3000/.

2.2.1 A User Tour

Visiting the root url http://localhost:3000/ shows the same default Rails page
shown in Figure 1.3, but in generating the Users resource scaffolding we have also
created a large number of pages for manipulating users. For example, the page for listing
all users is at /users, and the page for making a new user is at /users/ new.® The rest of this

6.Sincethehttp: //localhost : 3000 partof the address is implicit whenever we are developing locally,
I'll usually omit it from now on.

2.2 The Users Resource 47

Table 2.1 The correspondence between pages and URLs for the Users resource

URL Action Purpose

/users index page to list all users

/users/1 show page to show user with id 1
/users/new new page to make a new user
/users/1/edit edit page to edit user with id 1

section is dedicated to taking a whirlwind tour through these user pages. As we proceed,
it may help to refer to Table 2.1, which shows the correspondence between pages and
URLs.

We start with the page to show all the users in our application, called index; as you
might expect, initially there are no users at all (Figure 2.4).

ann Users: index M
°D (e - (4) hetg / localhost 3000/ users = ,ﬂ

Listing users

Name Email

New user

Figure 2.4 The initial index page for the Users resource (/users).

48 Chapter 2: A Demo App

—
hitp | Nocalhost 3000 fuser /new 1"y '

Lo I e

(Creane user)

Figure 2.5 The new user page (/users/new).

To make a new user, we visit the new page, as shown in Figure 2.5. (In Chapter 8,
this will become the user signup page.)

We can create a user by entering name and email values in the text fields and then
clicking the Create button. The result is the user show page, as seen in Figure 2.6.
(The green welcome message is accomplished using the flash, which we’ll learn about in
Section 8.3.3.) Note that the URL is /users/1; as you might suspect, the number 1 is
simply the user’s id attribute from Figure 2.2. In Section 7.3, this page will become the
user’s profile.

To change a user’s information, we visit the edi t page (Figure 2.7). By modifying the
user information and clicking the Update button, we arrange to change the information
for the user in the demo application (Figure 2.8). (As we'll see in detail starting in
Chapter 6, this user data is stored in a database back-end.) We'll add user edit/update
functionality to the sample application in Section 10.1.

2.2 The Users Resource 49

..(;-_ hitg [Slecalhast J000 /users /1 WY

Name: Michael Hary

Email: michaei@example. com

EQit | Back

‘liw i i 2 .i". '

Figure 2.6 The page to show a user (/users/1).

Now we'll create a second user by revisiting the new page and submitting a second
set of user information; the resulting user index is shown in Figure 2.9. Section 10.3
will develop the user index into a more polished page for showing all users.

Having shown how to create, show, and edit users, we come finally to destroying
them (Figure 2.10, page 54). You should verify that clicking on the link in Figure 2.10
destroys the second user, yielding an index page with only one user. (If it doesn’t work, be
sure that JavaScript is enabled in your browser; Rails uses JavaScript to issue the request
needed to destroy a user.) Section 10.4 adds user deletion to the sample app, taking care
to restrict its use to a special class of administrative users.

2.2.2 MVC in Action

Now that we’ve completed a quick overview of the Users resource, let’s examine one par-
ticular part of it in the context of the Model-View-Controller (MVC) pattern introduced

50 Chapter 2: A Demo App

ann DemoAss =
mu."uamuoomuanmnnl = 'i

Editing user

Name
Michael Hat

Email
e s e g

Show | Back

Figure 2.7 The user edit page (/users/1/edit).

in Section 1.2.6. Our strategy will be to describe the results of a typical browser hit—a
visit to the user index page at /users—in terms of MVC (Figure 2.11, page 55).
The steps in Figure 2.11:

. The browser issues a request for the /users URL.

. Rails routes /users to the index action in the Users controller.

. The index action asks the User model to retrieve all users (User.all).
. The User model pulls all the users from the database.

. The User model returns the list of users to the controller.

(<) WA TS SN SV NS R

. The controller captures the users in the @users variable, which is passed to the

index view.

2.2 The Users Resource 51

DemoApp —
hiig f focalhast 3000/ users/ 1 v 'ﬂ

Mame: Michasl Har

Email: michasi@example org

Edit | Back

[it

Figure 2.8 A user with updated information.

7. The view uses Embedded Ruby to render the page as HTML.
8. The controller passes the HTML back to the browser.”

We start with a request issued from the browser—i.e., the result of typing a URL
in the address bar or clicking on a link (Step 1 in Figure 2.11). This request hits the
Rails router (Step 2), which dispatches to the proper controller action based on the URL
(and, as we'll see in Box 3.1, the type of request). The code to create the mapping of
user URLSs to controller actions for the Users resource appears in Listing 2.2;% this code
effectively sets up the table of URL/action pairs seen in Table 2.1.

7. Some references indicate that the view returns the HTML directly to the browser (via a web server such as
Apache or Nginx). Regardless of the implementation details, I prefer to think of the controller as a central hub
through which all the application’s information flows.

8. The strange notation :users is a symbol, which we’ll learn about in Section 4.3.3.

52 Chapter 2: A Demo App

ann o -
on’ (c M n) hitg | focalhoit 1000 /users - i

Listing users

Name Email
Michael Hartl michael@example org Show EQit Destroy
Foo Bar foo@bar.com Show EQit Destroy

Now User

Figure 2.9 The user index page (/users) with a second user.

Listing 2.2 The Rails routes, with a rule for the Users resource.
config/routes.rb

DemoApp: :Application.routes.draw do
resources :users

end

The pages from the tour in Section 2.2.1 correspond to actionsin the Users controller,
which is a collection of related actions; the controller generated by the scaffolding is
shown schematically in Listing 2.3. Note the notation class UsersController <
ApplicationController; this is an example of a Ruby class with inheritance. (We'll

discuss inheritance briefly in Section 2.3.4 and cover both subjects in more detail in
Section 4.4.)

2.2 The Users Resource

Listing 2.3 The Users controller in schematic form.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def index

end

def show

end

def new

end

def create

end

def edit

end

def update

end

def destroy

end
end

54

Chapter 2: A Demo App

(hitp | flocalhost 3000/ uters

Listing users

Name Email
Michael Hartl michael@example.org Show Eait

Foo Bar foo@ bar.com Shaw Eais |

—— i

Figure 2.10 Destroying a user.

You may notice that there are more actions than there are pages; the index, show, new,

and edit actions all correspond to pages from Section 2.2.1, but there are additional

create, update, and destroy actions as well. These actions don’t typically render
pages (although they sometimes do); instead, their main purpose is to modify information
about users in the database. This full suite of controller actions, summarized in Table 2.2,
represents the implementation of the REST architecture in Rails (Box 2.2). Note from
Table 2.2 that there is some overlap in the URLS; for example, both the user show action
and the update action correspond to the URL /users/1. The difference between them
is the HTTP request method they respond to. We'll learn more about HTTP request

methods starting in Section 3.2.2.

Box 2.2 REpresentational State Transfer (REST)

If you read much about Ruby on Rails web development, you'll see a lot of refer-
ences to “REST”, which is an acronym for REpresentational State Transfer. REST is an

2.2 The Users Resource

@ lusers

d
@ index
Rails
router

View

(index.html.erb)

!

@users

HTML

|

Controller
(users_controller.rb)

-«+— User.all —

® ©®

HTML

Model

(user.rb)

Figure 2.11 A detailed diagram of MVC in Rails.

Table 2.2 RESTful routes provided by the Users resource in Listing 2.2

HTTP request URL Action Purpose

GET /users index page to list all users

GET /users/1 show page to show user with id 1
GET /users/new new page to make a new user
POST /users create create a new user

GET /users/1/edit edit page to edit user with id 1
PUT /users/1 update update user with id 1
DELETE /users/1 destroy delete user with id 1

56 Chapter 2: A Demo App

architectural style for developing distributed, networked systems and software appli-
cations such as the World Wide Web and web applications. Although REST theory is
rather abstract, in the context of Rails applications REST means that most applica-
tion components (such as users and microposts) are modeled as resources that can be
created, read, updated, and deleted—operations that correspond both to the CRUD
operations of relational databases and the four fundamental HTTP request methods:
POST, GET, PUT, and DELETE. (We'll learn more about HTTP requests in Section 3.2.2
and especially Box 3.1.)

The RESTful style of development helps you as a Rails application developer make
choices about which controllers and actions to write: you simply structure the applica-
tion using resources that get created, read, updated, and deleted. In the case of users
and microposts, this process is straightforward, since they are naturally resources in
their own right. In Chapter 12, we'll see an example where REST principles allow us
to model a subtler problem, ““following users”,in a natural and convenient way.

To examine the relationship between the Users controller and the User model, let’s
focus on a simplified version of the index action, shown in Listing 2.4.°

Listing 2.4 The simplified user index action for the demo application.
app/controllers/users_controller.rb

class UsersController < ApplicationController
def index

@Qusers = User.all
end

end

This index action has the line @users = user.all (Step 3), which asks the User
model to retrieve a list of all the users from the database (Step 4), and then places them
in the variable @users (pronounced “at-users”) (Step 5). The User model itself appears
in Listing 2.5; although it is rather plain, it comes equipped with a large amount of
functionality because of inheritance (Section 2.3.4 and Section 4.4). In particular, by
using the Rails library called Active Record, the code in Listing 2.5 arranges for user.all
to return all the users.

9. The scaffold code is ugly and confusing, so I've suppressed it.

2.2 The Users Resource 57

Listing 2.5 The User model for the demo application.
app/models/user.rb

class User < ActiveRecord::Base
end

Once the @users variable is defined, the controller calls the view (Step 6), shown in
Listing 2.6. Variables that start with the @ sign, called instance variables, are automatically
available in the view; in this case, the index.html.erb view in Listing 2.6 iterates
through the @users list and outputs a line of HTML for each one.!’

Listing 2.6 The view for the user index. (You are not expected to understand it now.)
app/views/users/index.html.erb

<hl>Listing users</hl>

<table>

<tr>
<th>Name</th>
<th>Email</th>
<th></th>
<th></th>
<th></th>

</tr>

<% @users.each do |user| %>
<tr>
<td><%= user.name %></td>
<td><%= user.email $></td>
<td><%= link_to 'Show',6 user $%></td>
<td><%= link_to 'Edit', edit_user_path(user) $%></td>
<td><%= link_to 'Destroy', user, :confirm => 'Are you sure?',
:method => :delete $></td>
</tr>
<% end 3>
</table>

<%= link_to 'New User', new_user_path &>

10. Remember, you aren’t supposed to understand this code right now. It is shown only for purposes of
illustration.

58 Chapter 2: A Demo App

The view converts its contents to HTML (Step 7), which is then returned by the controller
to the browser for display (Step 8).

2.2.3 Weaknesses of This Users Resource

Though good for getting a general overview of Rails, the scaffold Users resource suffers
from a number of severe weaknesses.

+ No data validations. Our User model accepts data such as blank names and invalid
email addresses without complaint.

+ No authentication. We have no notion signing in or out, and no way to prevent
any user from performing any operation.

+ No tests. This isn’t technically true—the scaffolding includes rudimentary tests—
but the generated tests are ugly and inflexible, and they don’t test for data validation,
authentication, or any other custom requirements.

+ No layout. There is no consistent site styling or navigation.

+ No real understanding. If you understand the scaffold code, you probably shouldn’t
be reading this book.

2.3 The Microposts Resource

Having generated and explored the Users resource, we turn now to the associated Mi-
croposts resource. Throughout this section, I recommend comparing the elements of
the Microposts resource with the analogous user elements from Section 2.2; you should
see that the two resources parallel each other in many ways. The RESTful structure of
Rails applications is best absorbed by this sort of repetition of form; indeed, seeing the
parallel structure of Users and Microposts even at this early stage is one of the prime
motivations for this chapter. (As we'll see, writing applications more robust than the toy
example in this chapter takes considerable effor—we won’t see the Microposts resource
again until Chapter 11—and I didn’t want to defer its first appearance quite that far.)

2.3.1 A Micropost Microtour

As with the Users resource, we'll generate scaffold code for the Microposts resource
using rails generate scaffold, in this case implementing the data model from
Figure 2.3:!!

11. As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails
models; thus, we have generate Micropost.

2.3 The Microposts Resource

$ rails generate scaffold Micropost content:string user_id:integer

invoke
create
create
invoke
create
create

route
invoke
create
invoke
create
create
create
create
create
create
invoke
create
invoke
create
invoke
create
invoke

identical

active_record
db/migrate/20100615004429_create_microposts.rb
app/models/micropost.rb
test_unit
test/unit/micropost_test.rb
test/fixtures/microposts.yml
resources :microposts
scaffold controller
app/controllers/microposts_controller.rb
erb
app/views/microposts
app/views/microposts/index.html.erb
app/views/microposts/edit.html.erb
app/views/microposts/show.html.erb
app/views/microposts/new.html.erb
app/views/microposts/_form.html.erb
test_unit
test/functional/microposts_controller test.rb
helper
app/helpers/microposts_helper.rb
test_unit
test/unit/helpers/microposts_helper_test.rb
stylesheets
public/stylesheets/scaffold.css

59

To update our database with the new data model, we need to run a migration as in

Section 2.2:

$ rake db:migrate

== CreateMicroposts: migrating

-- create_table(:microposts)

-> 0.0023s

== CreateMicroposts: migrated (0.0026s) ===============================

Now we are in a position to create microposts in the same way we created users

in Section 2.2.1. As you might guess, the scaffold generator has updated the Rails

routes file with a rule for Microposts resource, as seen in Listing 11.21 12 As with users,

the resources :microposts routing rule maps a micropost URLs to actions in the

Microposts controller, as seen in Table 2.3.

12. The scaffold code may have extra newlines compared to Listing 11.21; this is not a cause for concern, as
Ruby ignores extra newlines.

60 Chapter 2: A Demo App

Table 2.3 RESTful routes provided by the Microposts resource in Listing 2.7

HTTP request URL Action Purpose

GET /microposts index page to list all microposts

GET /microposts/1 show page to show micropost with id 1
GET /microposts/new new page to make a new micropost
POST /microposts create create a new micropost

GET /microposts/1l/edit edit page to edit micropost with id 1
PUT /microposts/1 update update micropost with id 1
DELETE /microposts/1 destroy delete micropost with id 1

Listing 2.7 The Rails routes, with a new rule for Microposts resources.
config/routes.rb

DemoApp: :Application.routes.draw do
resources :microposts

resources :users

end

The Microposts controller itself appears in schematic form in Listing 2.8. Note that,
apart from having MicropostsController in place of UsersController, Listing 2.8
is identical to the code in Listing 2.3. This is a reflection of the REST architecture

common to both resources.

Listing 2.8 The Microposts controller in schematic form.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

def index

end

def show

2.3 The Microposts Resource 61

end

def new

end

def create

end

def edit

end

def update

end

def destroy

end
end

To make some actual microposts, we enter information at the new microposts page,
/microposts/new, as seen in Figure 2.12.

At this point, go ahead and create a micropost or two, taking care to make sure that
at least one has a user_id of 1 to match the id of the first user created in Section 2.2.1.
The result should look something like Figure 2.13.

2.3.2 Putting the Micro in Microposts

Any micropost worthy of the name should have some means of enforcing the length of the
post. Implementing this constraint in Rails is easy with validations; to accept microposts
with at most 140 characters (a la Twitter), we use a length validation. At this point, you

62 Chapter 2: A Demo App

ity | flocaihost: 3000/ microaoits/ new ¥

ann DemaAsp ﬁﬂ

New micropost

Content
Firyt microposy

User
1

(Create weroson)

Dack

Figure 2.12 The new micropost page (/microposts/new).

should open the file app/models/micropost.rb in your text editor or IDE and fill it
with the contents of Listing 2.9. (The use of validates in Listing 2.9 is characteristic
of Rails 3; if you've previously worked with Rails 2.3, you should compare this to the
use of validates_length of.)

Listing 2.9 Constraining microposts to at most 140 characters with a length validation.
app/models/micropost.rb

class Micropost < ActiveRecord::Base
validates :content, :length => { :maximum => 140 }

end

The code in Listing 2.9 may look rather mysterious—we’ll cover validations more
thoroughly starting in Section 6.2—but its effects are readily apparent if we go to the

2.3 The Microposts Resource 63

a

nttg | [localhast 3000/ microposts ™)

Listing microposts

Cantent user
First micropost! 1 Show EAit Destroy
Second micropost 1 Show Edit Destroy

Figure 2.13 The micropost index page (/microposts).

new micropost page and enter more than 140 characters for the content of the post. As
seen in Figure 2.14, Rails renders error messages indicating that the micropost’s content
is too long.!? (We'll learn more about error messages in Section 8.2.3.)

2.3.3 A User has_many Microposts

One of the most powerful features of Rails is the ability to form associations between
different data models. In the case of our User model, each user potentially has many
microposts. We can express this in code by updating the User and Micropost models as
in Listing 2.10 and Listing 2.11.

13. You might notice that the HTML Validator indicates an error; annoyingly, the default Rails error messages
are not valid HTML.

64 Chapter 2: A Demo App

ann DemoAnp)
- }))i i | ocaliost 1000/ micropouts W ‘

New micropost

1 arror prohibited this micropost from being saved:

a Content is 100 long (maximum is 140 characters)

Iwww BT, (uunrwl

User

Figure 2.14 Error messages for a failed micropost creation.

Listing 2.10 A user has many microposts.
app/models/user.rb

class User < ActiveRecord::Base
has_many :microposts
end

Listing 2.11 A micropost belongs to a user.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base
belongs_to :user

validates :content, :length => { :maximum => 140 }

end

2.3 The Microposts Resource 65

users
_ id name email
microposts 1 Michael Hartl mhartl@example.com
id content user_id 2 Foo Bar foo@bar.com
1 First post! 1 7
2 Second post | 1 7
3 Another post [2 o

Figure 2.15 The association between microposts and users.

We can visualize the result of this association in Figure 2.15. Because of theuser_ia
column in the microposts table, Rails (using Active Record) can infer the microposts
associated with each user.

In Chapter 11 and Chapter 12, we will use the association of users and micro-
posts both to display all a user’s microposts and to construct a Twitter-like micropost
feed. For now, we can examine the implications of the user-micropost association by
using the console, which is a useful tool for interacting with Rails applications. We
first invoke the console with rails console at the command line, and then retrieve
the first user from the database using User.£first (putting the results in the variable

first_user):!

S rails console

>> first_user = User.first

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",
created_at: "2010-04-03 02:01:31", updated_at: "2010-04-03 02:01:31">

>> first_user.microposts

=> [#<Micropost id: 1, content: "First micropost!", user_id: 1, created_at:
"2010-04-03 02:37:37", updated_at: "2010-04-03 02:37:37">, #<Micropost id: 2,
content: "Second micropost", user_id: 1, created_at: "2010-04-03 02:38:54",
updated_at: "2010-04-03 02:38:54">]

Here we have accessed the user’s microposts using the code first_user.microposts;
with this code, Active Record automatically returns all the microposts with user_id
equal to the id of first_user (in this case, 1). We'll learn much more about the
association facilities in Active Record in Chapter 11 and Chapter 12.

14. Your console prompt will probably be something like ruby-1.9.2-head >, but I'll use >> so that the
prompt isn’t tied to a specific Ruby version.

66 Chapter 2: A Demo App

2.3.4 Inheritance Hierarchies

We end our discussion of the demo application with a brief description of the controller
and model class hierarchies in Rails. This discussion will only make much sense if
you have some experience with object-oriented programming (OOP); if you haven’t
studied OOP, feel free to skip this section. In particular, if you are unfamiliar with classes
(discussed in Section 4.4), I suggest looping back to this section at a later time.

We start with the inheritance structure for models. Comparing Listing 2.12 and
Listing 2.13, we see that both the User model and the Micropost model inherit (via the left
angle bracket <) from Act iveRecord: : Base, which is the base class for models provided
by ActiveRecord; a diagram summarizing this relationship appears in Figure 2.16. It is
by inheriting from ActiveRecord: :Base that our model objects gain the ability to
communicate with the database, treat the database columns as Ruby attributes, and

SO on.

Listing 2.12 The User class, with inheritance.
app/models/user.rb

class User < ActiveRecord::Base

end

Listing 2.13 The Micropost class, with inheritance.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base

end

The inheritance structure for controllers is only slightly more complicated. Compar-
ing Listing 2.14 and Listing 2.15, we see that both the Users controller and the Microposts
controller inherit from the Application controller. Examining Listing 2.16, we see that
ApplicationController itself inherits from ActionController: :Base; this is the
base class for controllers provided by the Rails library Action Pack. The relationships
between these classes is illustrated in Figure 2.17.

2.3 The Microposts Resource 67

ActiveRecord::Base

Figure 2.16 The inheritance hierarchy for the User and Micropost models.

Listing 2.14 The UsersController class, with inheritance.
app/controllers/users_controller.rb

class UsersController < ApplicationController

end

Listing 2.15 The MicropostsController class, with inheritance.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

end

Listing 2.16 The ApplicationController class, with inheritance.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

end

68 Chapter 2: A Demo App

ActionController::Base

ApplicationController

UsersController MicropostsController

Figure 2.17 The inheritance hierarchy for the Users and Microposts controllers.

As with model inheritance, by inheriting ultimately from Actioncontroller::
Base both the Users and Microposts controllers gain a large amount of functionality, such
as the ability to manipulate model objects, filter inbound HTTP requests, and render
views as HTML. Since all Rails controllers inherit from ApplicationController,
rules defined in the Application controller automatically apply to every action in the
application. For example, in Section 8.2.4 we’ll see how defining a rule in the Application
controller allows us to filter passwords from all the Rails log files, thereby avoiding a

serious potential security breach.

2.3.5 Deploying the Demo App

With the completion of the Microposts resource, now is a good time to push the repos-
itory up to GitHub:"

$ git add .
$ git commit -a -m "Done with the demo app"
$ git push

15. Ordinarily, you should make smaller, more frequent commits, but for the purposes of this chapter a single
big commit at the end is just fine.

2.4 Conclusion 69
You can also deploy the demo app to Heroku:

$ heroku create
$ git push heroku master
$ heroku rake db:migrate

(If this doesn’t work for you, see the note just above Listing 1.8 for a possible fix.)
Note the final line here, which runs the database migrations on the Heroku server. This
updates the database at Heroku with the necessary user/micropost data model. If you
want to push the data up, too, you can do so using the taps gem and db:push:

$ [sudo] gem install taps
$ heroku db:push

2.4 Conclusion

We've come now to the end of the 30,000-foot view of a Rails application. The demo
app developed in this chapter has several strengths and a host of weaknesses.

Strengths

« High-level overview of Rails

o Introduction to MVC

o First taste of the REST architecture
 Beginning data modeling

« A live, database-backed web application in production!®

Weaknesses

» No custom layout or styling
+ No static pages (like “Home” or “About”)

o No user passwords

16. If you deployed to Heroku in Section 2.3.5.

70 Chapter 2: A Demo App

» No user images

» No signing in

» No security

» No automatic user/micropost association
+ No notion of “following” or “followed”
» No micropost feed

+ No test-driven development

« No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating the
weaknesses.

CHAPTER 3

Mostly Static Pages

In this chapter, we will begin developing the sample application that will serve as our
example throughout the rest of this tutorial. Although the sample app will eventually
have users, microposts, and a full login and authentication framework, we will begin with
a seemingly limited topic: the creation of static pages. Despite its seeming simplicity,
making static pages is a highly instructive exercise, rich in implications—a perfect start
for our nascent application.

Although Rails is designed for making database-backed dynamic websites, it also
excels at making the kind of static pages we might make with raw HTML files. In fact,
using Rails even for static pages yields a distinct advantage: we can easily add just a small
amount of dynamic content. In this chapter we’ll learn how. Along the way, we’ll get
our first taste of automated testing, which will help us be more confident that our code
is correct. Moreover, having a good test suite will allow us to refactor our code with
confidence, changing its form without changing its function.

As in Chapter 2, before getting started we need to create a new Rails project, this
time called sample_app:

$ cd " /rails_projects
$ rails new sample_app -T
$ cd sample_app

Here the - option to the rails command tells Rails not to generate a test directory
associated with the default Test: :Unit framework. This is not because we won’t be
writing tests; on the contrary, starting in Section 3.2 we will be using an alternate testing
framework called RSpec to write a thorough test suite.

71

72 Chapter 3: Mostly Static Pages

As in Section 2.1, our next step is to use a text editor to update the Gemfile with
the gems needed by our application. As in the case of the first application, note that
the sqlite3-ruby gem is version 1.2.5, which as before we’ll need for developing
the application locally. (Recall that I need version 1.2.5 of the sglite3-ruby gem on
my system, but you should try version 1.3.1 if 1.2.5 doesn’t work on your system.)
On the other hand, for the sample application we’ll also need two gems we didn’t need
before: the gem for RSpec and the gem for the RSpec library specific to Rails. The code
to include them is shown in Listing 3.1. (Note: If you would like to install @/ the gems
needed for the sample application, you should use the code in Listing 10.42 at this time.)

Listing 3.1 A Gemfile for the demo app.

source 'http://rubygems.org’

gem 'rails', '3.0.0°'
gem 'sglite3-ruby', '1.2.5', :require => 'sglite3'

group :development do
gem 'rspec-rails', '2.0.1"'
end

group :test do
gem 'rspec', '2.0.1"
gem 'webrat', '0.7.1°'
end

This includes rspec-rails in development mode so that we have access to RSpec-
specific generators, and it includes rspec in test mode in order to run the tests. (We also
include a gem for Webrat, a testing utility which used to be installed automatically as a
dependency but now needs to be included explicitly.) To install and include the RSpec
gems, we use bundle install as usual:

$ bundle install

In order to get Rails to use RSpec in place of Test: :Unit, we need to install the
files needed by RSpec. This can be accomplished with rails generate:

$ rails generate rspec:install

http://rubygems.org

Mostly Static Pages 73

With that, all we have left is to initialize the Git repository:!

$ git init
$ git add .
$ git commit -m "Initial commit"

As with the first application, I suggest updating the README file (located in the root
directory of the application) to be more helpful and descriptive, as shown in Listing 3.2.

Listing 3.2 An improved README file for the sample app.

Ruby on Rails Tutorial: sample application

This is the sample application for
[*Ruby on Rails Tutorial: Learn Rails by Example*] (http://railstutorial.org/)
by [Michael Hartl] (http://michaelhartl.com/) .

Then change it to use the markdown extension and commit the changes:

$ git mv README README.markdown
$ git commit -a -m "Improved the README"

Since we’ll be using this sample app throughout the rest of the book, it’s a good idea
to make a repository at GitHub (Figure 3.1) and push it up:

$ git remote add origin git@github.com:<username>/sample_app.git
$ git push origin master

(Note that, as a result of this step, the repository at http://github.com/railstutorial/
sample app has the source code for the full sample application. You are welcome to
consult it for reference, with two caveats: (1) You will learn a lot more if you type in
the source code samples yourself, rather than relying on the completed version; (2) there
may be minor differences between the GitHub repository and the code in the book. This
is due both to the incorporation of some of the book’s exercises and to the repository’s
use in the Rails Tutorial screencasts, which includes a few more tests.)

1. As before, you may find the augmented file from Listing 1.5 to be more convenient depending on your
system.

http://railstutorial.org/
http://michaelhartl.com/
http://github.com/railstutorial/sample.app
http://github.com/railstutorial/sample.app

74 Chapter 3: Mostly Static Pages

Create a New Repository
Create a new empty repository into which you can push your local git repo.
NOTE: If you intend to push a copy of a repository that is already hosted on GitHub, please fork it instead
Project Name
sample_app

Description

[Ruby on Rails Tutorial sample application

Homepage URL
hitp/hwww.railstutorial.org/
Who has access to this reposilory? (You can change th
@ Anyone (leam more about public repos)
Veorade vour plan 10 creale more privale reposilodes!

Figure 3.1 Creating the sample app repository at GitHub.

Of course, we can optionally deploy the app to Heroku even at this early stage:

$ heroku create
$ git push heroku master

(If this doesn’t work for you, see the note just above Listing 1.8 for a possible fix.) As
you proceed through the rest of the book, I recommend pushing and deploying the
application regularly:

$ git push
$ git push heroku

With that, we’re ready to get started developing the sample application.

3.1 Static Pages

Rails has two main ways of making static web pages. First, Rails can handle #ruly static
pages consisting of raw HTML files. Second, Rails allows us to define views containing
raw HTML, which Rails can render so that the web server can send it to the browser.
In order to get our bearings, it’s helpful to recall the Rails directory structure from
Section 1.2.3 (Figure 1.2). In this section, we’ll be working mainly in the
app/controllers and app/views directories. (In Section 3.2, we'll even add a new

directory of our own.)

3.1 Static Pages 75

3.1.1 Truly Static Pages

We start with truly static pages. Recall from Section 1.2.5 that every Rails application
comes with a minimal working application thanks to the rails script, with a default
welcome page at the address http://localhost:3000/ (Figure 1.3).

To learn where this page comes from, take a look at the file public/index.html
(Figure 3.2). Because the file contains its own stylesheet information, it’s a little messy,
but it gets the job done: by default, Rails serves any files in the public directory directly

<!DOCTYPE html>
<html>
<head>
<title=Ruby on Rails: Welcome aboard</title-
<style types"text/css” medios"screen™s
body {
margin: @;
margin-bottom: 25px;
padding: ©;
background-color:
font-family: "Lucida Grande
font-size: 13px;
color: #333;
}

hl {
font-size: 28px;
color: #000;

}

a {color: #@3c}
a:hover {

background-color: #93c;
color: white;
text-decoration: none;

}

#page {
background-color: #fefefe,;
width: 750px;
margin: @;
33 margin-left: auto;
34 margin-right: auto;
5 }
36
37 #content {
38 float: left;
39 background-color: white;
40 border: 3px solid #ooa;
41 border-top: none;

42 padding: 25ox:
Line: 3 Column: 1) HTML

Figure 3.2 The public/index.html file.

76 Chapter 3: Mostly Static Pages

to the browser.? In the case of the special index.html file, you don’t even have to
indicate the file in the URL, as index.html is the default. You can include it if you
want, though; the addresses

http://localhost:3000/

and

http://localhost:3000/index.html
are equivalent.
As you might expect, if we want we can make our own static HTML files and put

them in the same public directory as index.html. For example, let’s create a file with
a friendly greeting (Listing 3.3):?

$ mate public/hello.html

Listing 3.3 A typical HTML file, with a friendly greeting.
public/hello.html

<!DOCTYPE html>
<html>
<head>
<title>Greeting</title>
</head>
<body>
<p>Hello, world!</p>
</body>
</html>

We see in Listing 3.3 the typical structure of an HTML document: a document type,
or doctype, declaration at the top to tell browsers which version of HTML we’re using
(in this case, HTML5);* a head section, in this case with “Greeting” inside a title tag;

2. In fact, Rails ensures that requests for such files never hit the main Rails stack; they are delivered directly
from the filesystem. (See The Rails 3 Way for more details.)

3. As usual, replace mate with the command for your text editor.

4. HTML changes with time; by explicitly making a doctype declaration we make it likelier that browsers will

render our pages properly in the future. The extremely simple doctype <!DOCTYPE html> is characteristic of

the latest HTML standard, HTMLS5.

3.1 Static Pages 77

ann Groeting —

m 960 7 http. | localbost 3000 /hello. himi o vﬂ
Hello, world!

I el

Figure 3.3 Our very own static HTML file (http: //localhost:3000/hello.html).

and a body section, in this case with “Hello, world!” inside a p (paragraph) tag. (The
indentation is optional—HTML is not sensitive to whitespace, and ignores both tabs
and spaces—but it makes the document’s structure easier to see.) As promised, when
visiting the address http://localhost:3000/hello.html, Rails renders it straight-
away (Figure 3.3). Note that the title displayed at the top of the browser window in
Figure 3.3 is just the contents inside the title tag, namely, “Greeting”.

Since this file is just for demonstration purposes, we don’t really want it to be part
of our sample application, so it’s probably best to remove it once the thrill of creating it
has worn off:

$ rm public/hello.html

78 Chapter 3: Mostly Static Pages

We'll leave the index.html file alone for now, but of course eventually we
should remove it: we don’t want the root of our application to be the Rails de-
fault page shown in Figure 1.3. We'll see in Section 5.2 how to change the address
http://localhost:3000/ to point to something other than public/index.html.

3.1.2 Static Pages with Rails

The ability to return static HTML files is nice, but it’s not particularly useful for making
dynamic web applications. In this section, we’ll take a first step toward making dynamic
pages by creating a set of Rails actions, which are a more powerful way to define URLs
than static files.> Rails actions come bundled together inside controllers (the C in MVC
from Section 1.2.6), which contain sets of actions related by a common purpose. We got
a glimpse of controllers in Chapter 2, and will come to a deeper understanding once we
explore the REST architecture more fully (starting in Chapter 6); in essence, a controller
is a container for a group of (possibly dynamic) web pages.

To get started, recall from Section 1.3.5 that, when using Git, it’s a good practice to
do our work on a separate topic branch rather than the master branch. If you’re using
Git for version control, you should run the following command:

$ git checkout -b static-pages

Rails comes with a script for making controllers called generate; all it needs to
work its magic is the controller’s name. Since we’re making this controller to handle
(mostly) static pages, we’ll just call it the Pages controller, and plan to make actions for a
Home page, a Contact page, and an About page. The generate script takes an optional
list of actions, so we’ll include some of our initial actions directly on the command line:

Listing 3.4 Generating a Pages controller.

$ rails generate controller Pages home contact
create app/controllers/pages_controller.rb
route get "pages/contact"
route get "pages/home"

5. Our method for making static pages is probably the simplest, but it’s not the only way. The optimal method
really depends on your needs; if you expect a Jarge number of static pages, using a Pages controller can get quite
cumbersome, but in our sample app we’ll only need a few. See this blog post on simple pages at has_many
: through forasurvey of techniques for making static pages with Rails. Warning: the discussion is fairly advanced,
so you might want to wait a while before trying to understand it.

3.1 Static Pages 79

invoke erb

create app/views/pages

create app/views/pages/home.html.erb

create app/views/pages/contact.html.erb

invoke rspec

create spec/controllers/pages_controller_spec.rb
create spec/views/pages

create spec/views/pages/home.html.erb_spec.rb
create spec/views/pages/contact.html.erb_spec.rb

invoke helper
create app/helpers/pages_helper.rb
invoke rspec

(Note that, because we installed RSpec with rails generate rspec:install, the
controller generation automatically creates RSpec test files in the spec/ directory.) Here,
I've intentionally “forgotten” the about page so that we can see how to add it in by hand
(Section 3.2).

The Pages controller generation in Listing 3.4 automatically updates the routes file,
called config/routes.rb, which Rails uses to find the correspondence between URLs
and web pages. This is our first encounter with the config directory, so it’s helpful to
take a quick look at it (Figure 3.4). The config directory is where Rails collects files
needed for the application configuration—hence the name.

Since we generated home and contact actions, the routes file already has a rule for
each one, as seen in Listing 3.5.

Listing 3.5 The routes for the home and contact actions in the Pages controller.
config/routes.rb

SampleApp: :Application.routes.draw do
get "pages/home"
get "pages/contact"

end

Here the rule

get "pages/home"

80 Chapter 3: Mostly Static Pages

» DEVICES e DateModified
» G app Yesterday, 7:33 PM - Folder
* PLACES
» SEARCH FOR = -
application.rb Yesterday, 7:33 PM 4 KB Ruby source
boot.rb Yesterday, 7:33 PM 4 KB Ruby source
database.ym| Yesterday, 7:33 PM 4 KB YAML .._ment
environment.rb Yesterday, 7:33 PM 4 KB Ruby source
» [environments Yesterday, 7:33 PM - Folder
- Q initializers Yesterday, 8:03 PM - Folder
» [locales Yesterday, 7:33 PM -- Folder
routes.r Today, 11:13 AM 4 KB Ruby source
: config.ru Yesterday, 7:33 PM 4 KB Document
[console Today, 3:56 PM 72 KB Plain text
» B d Today, B:20 AM == Folder
» [doc Yesterday, 7:33 PM - Folder
| Gemfile Today, 3:36 PM 4 KB Plain text
» b Yesterday, 7:33 PM -- Folder
> [1og Yesterday, 7:33 PM == Folder
» @8 public Today, 11:08 AM - Folder
['] Rakefile Yesterday, 7:33 PM 4KB Paintext
{1 README Yesterday, 7:33 PM 12KB Plain text
> [script Yesterday, 7:33 PM - Folder
» [spec Today, 10:56 AM - Folder
» @ wmp Yesterday, 7:33 PM - Folder
» [l vendor Yesterday, 7:33 PM - Folder
webrat.log Today, 11:12 AM 4 KB Log File

Figure 3.4 Contents of the sample app’s config directory.

maps requests for the URL /pages/home to the home action in the Pages controller.
Moreover, by using get we arrange for the route to respond to a GET request, which
is one of the fundamental H77TP verbs supported by the hypertext transfer protocol
(Box 3.1). In our case, this means that when we generate a home action inside the Pages
controller we automatically get a page at the address /pages/home. To see the results,
kill the server by hitting Ctrl-C, run rails server, and then navigate to /pages/home

(Figure 3.5).

Box 3.1 GET, et cet.

The hypertext transfer protocol (HTTP) defines four basic operations, corresponding
to the four verbs get, post, put, and delete. These refer to operations between a client
computer (typically running a web browser such as Firefox or Safari) and a server (typ-
ically running a web server such as Apache or Nginx). (It's important to understand
that, when developing Rails applications on a local computer, the client and server are
the same physical machine, but in general they are different.) An emphasis on HTTP
verbs is typical of web frameworks (including Rails) influenced by the REST architecture,
which we’ll start learning about in Chapter 8.

3.1 Static Pages 81

GET is the most common HTTP operation, used for reading data on the web; it just
means ““get a page’’, and every time you visit a site like google.com or craigslist.org
your browser is submitting a GET request. POST is the next most common operation;
it is the request sent by your browser when you submit a form. In Rails applications,
POST requests are typically used for creating things (although HTTP also allows POST
to perform updates); for example, the POST request sent when you submit a regis-
tration form creates a new user on the remote site. The other two verbs, PUT and
DELETE, are designed for updating and destroying things on the remote server. These
requests are less common than GET and POST since browsers are incapable of sending
them natively, but some web frameworks (including Ruby on Rails) have clever ways
of making it seem like browsers are issuing such requests.

To understand where this page comes from, let’s start by taking a look at the Pages
controller in a text editor; you should see something like Listing 3.6. (You may note that,

ann Mozilla Firefox
\-1_'_ = |_£_WI (x} k__ﬁ") (_____ hitg [/lecalhost 1000/ pages /home - _ - v
Pages#home

Find me in app/views/pageshome htmlerh

[T Dose 2) 2 arrers | O wamngs 4"

Figure 3.5 The raw home view (/pages/home) generated by Rails.

82 Chapter 3: Mostly Static Pages
unlike the demo Users and Microposts controllers from Chapter 2, the Pages controller
does not follow the REST conventions.)

Listing 3.6 The Pages controller made by Listing 3.4.
app/controllers/pages_controller.rb

class PagesController < ApplicationController

def home
end

def contact
end
end

We see here that pages_controller.rb defines a class called PagesController.
Classes are simply a convenient way to organize functions (also called methods) like
the home and contact actions, which are defined using the def keyword. The angle
bracket < indicates that PagesController inberits from the Rails class Application-
Controller; as we'll see momentarily, this means that our pages come equipped with
a large amount of Rails-specific functionality. (We’ll learn more about both classes and
inheritance in Section 4.4.)

In the case of the Pages controller, both its methods are initially empty:

def home
end

def contact
end

In plain Ruby, these methods would simply do nothing. In Rails, the situation is dif-
ferent; PagesController is a Ruby class, but because it inherits from Application-
controller the behavior of its methods is specific to Rails: when visiting the URL
/pages/home, Rails looks in the Pages controller and executes the code in the home
action, and then renders the view (the V in MVC from Section 1.2.6) corresponding to
the action. In the present case, the home action is empty, so all hitting /pages/home
does is render the view. So, what does a view look like, and how do we find it?

If you take another look at the output in Listing 3.4, you might be able to guess
the correspondence between actions and views: an action like home has a corresponding

3.1 Static Pages 83

view called home.html.erb. We'll learn in Section 3.3 what the .erb part means;
from the .html part you probably won’t be surprised that it basically looks like HTML
(Listing 3.7).

Listing 3.7 The generated view for the Home page.
app/views/pages/home.html.erb

<hl>Pages#home</hl>
<p>Find me in app/views/pages/home.html.erb</p>

The view for the contact action is analogous (Listing 3.8).

Listing 3.8 The generated view for the Contact page.
app/views/pages/contact.html.erb

<hl>Pages#contact</hl>
<p>Find me in app/views/pages/contact.html.erb</p>

Both of these views are just placeholders: they have a top-level heading (inside the h1
tag) and a paragraph (p tag) with the full path to the relevant file. We'll add some (very
slightly) dynamic content starting in Section 3.3, but as they stand these views underscore
an important point: Rails views can simply contain static HTML. As far as the browser
is concerned, the raw HTML files from Section 3.1.1 and the controller/action method
of delivering pages are indistinguishable: all the browser ever sees is HTML.

In the remainder of this chapter, we’ll first add the about action we “forgot” in
Section 3.1.2, add a very small amount of dynamic content, and then take the first steps
toward styling the pages with CSS. Before moving on, if you're using Git it’s a good idea
to add the files for the Pages controller to the repository at this time:

$ git add .
$ git commit -am "Added a Pages controller"

You may recall from Section 1.3.5 that we used the Git command git commit -a -m
"Message", with flags for “all changes” (-a) and a message (-m); Git also lets us roll the
two flags into one as -am, and I'll stick with this more compact formulation throughout
the rest of this book.

84 Chapter 3: Mostly Static Pages

3.2 Our First Tests

If you ask five Rails developers how to test any given piece of code, you'll get about
fifteen different answers—but they’ll all agree that you should definitely be writing
tests. It’s in this spirit that we’ll approach testing our sample application, writing solid
tests without worrying too much about making them perfect. You shouldn’t take the
tests in Rails Tutorial as gospel; they are based on the style I have developed during
my own work and from reading the code of others. As you gain experience as a Rails
developer, you will no doubt form your own preferences and develop your own testing
style.

In addition to writing tests throughout the development of the sample application, we
will also make the increasingly common choice about when to write tests by writing them
before the application code—an approach known as test-driven development, or TDD.
Our specific example will be to add an About page to our sample site. Fortunately,
adding the extra page is not hard—you might even be able to guess the answer based on
the examples in the previous section—which means that we can focus on testing, which
contains quite a few new ideas.

At first, testing for the existence of a page might seem like overkill, but experience
shows that it is not. So many things can go wrong when writing software that having
a good test suite is invaluable to assure quality. Moreover, it is common for computer
programs—and especially web applications—to be constantly extended, and any time
you make a change you risk introducing errors. Writing tests doesn’t guarantee that these
bugs won’t happen, but it makes them much more likely to be caught (and fixed) when
they occur. Furthermore, by writing tests for bugs that do happen, we can make them
much less likely to recur.

(As noted in Section 1.1.1, if you find the tests overwhelming, go ahead and skip
them on first reading. Once you have a stronger grasp of Rails and Ruby, you can loop
back and learn testing on a second pass.)

3.2.1 Testing Tools

To write tests for our sample application, our main tool is a framework called RSpec,
which is a domain-specific language for describing the behavior of code, together with a
program (called rspec) to verify the desired behavior. Designed for testing any Ruby

6. In the context of RSpec, TDD is also known as Behavior Driven Development, or BDD. (Frankly, 'm not
convinced there’s much of a difference.)

3.2 Our First Tests 85

program, RSpec has gained significant traction in the Rails community. Obie Fernandez,
author of The Rails 3 Way, has called RSpec “the Rails Way”, and I agree.”

If you followed the steps in the introduction, RSpec has already been installed via
the Bundler Gemfile (Listing 3.1) and bundle install.

Autotest
Autotest is a tool that continuously runs your test suite in the background based on the
specific file changes you make. For example, if you change a controller file, Autotest runs
the tests for that controller. The result is instant feedback on the status of your tests.
We'll learn more about Autotest when we see it in action (Section 3.2.2).

Installing Autotest is optional, and configuring it can be a bit tricky, but if you can
get it to work on your system I'm sure you’ll find it as useful as I do. To install Autotest,
install the autotest and autotest—rails—pure8 gems as follows:9

$ [sudo] gem install autotest -v 4.3.2
$ [sudo] gem install autotest-rails-pure -v 4.1.0

The next steps depend on your platform. I'll go through the steps for OS X, since
that’s what I use, and then give references to blog posts that discuss Autotest on Linux
and Windows. On OS X, you should install Growl (if you don’t have it already) and

then install the autotest-fsevent and autotest-growl gems:10

$ [sudo] gem install autotest-fsevent -v 0.2.2
$ [sudo] gem install autotest-growl -v 0.2.4

If FSEvent won’t install properly, double-check that Xcode is installed on your system.

7. The Shoulda testing framework is a good alternate choice (and in fact can be used with RSpec). It’s the Other
Rails Way, so to speak.

8. This used to be just autotest-rails, but it depends on the full ZenTest suite, which caused problems on
some systems. The autotest-rails-pure gem avoids this dependency.

9. If you’re running OS X Snow Leopard, you might have to use different versions. Simply omit the -v ...
flag to get the latest version of the gem.

10. The Autotest Growl gem causes the test results to be automatically displayed to the monitor, whereas the
FSEvent gem causes Autotest to use OS X filesystem events to trigger the test suite, rather than continuously
polling the filesystem. Also note that with both gems you might need to use an updated version if you’re running
OS X Snow Leopard.

86 Chapter 3: Mostly Static Pages

To use the Growl and FSEvent gems, make an Autotest configuration file in your
Rails root directory and fill it with the contents of Listing 3.9:

$ mate .autotest

Listing 3.9 The .autotest configuration file for Autotest on OS X.

require 'autotest/growl'
require 'autotest/fsevent'

(Note: this will create an Autotest configuration for the sample application only; if you
want to share this Autotest configuration with other Rails or Ruby projects, you should
create the .autotest file in your home directory instead:

$ mate ~/.autotest

where ~ (tilde) is the Unix symbol for “home directory”.)

If you're running Linux with the Gnome desktop, you should try the steps at Au-
tomate Everything, which sets up on Linux a system similar to Growl notifications on
OS X. Windows users should try installing Growl for Windows and then follow the
instructions at the GitHub page for autotest-growl. Both Linux and Windows users
might want to take a look at autotest-notification; Rails Tutorialreader Fred Schoeneman
has a write-up about Autotest notification on his blog."!

3.2.2 TDD: Red, Green, Refactor

In test-driven development, we first write a fziling test: in our case, a piece of code that
expresses the idea that there “should be an about” page. Then we get the test to pass,
in our case by adding the about action and corresponding view. The reason we don’t
typically do the reverse—implement first, then test—is to make sure that we actually
test for the feature we're adding. Before I started using TDD, I was amazed to discover
how often my “tests” actually tested the wrong thing, or even tested nothing at all. By

11. http://fredschoeneman.posterous.com/pimp-your-autotest-notification

http://fredschoeneman.posterous.com/pimp-your-autotest-notification

3.2 Owur First Tests 87

making sure that the test fails first and #hen passes, we can be more confident that the
test is doing the right thing.

It’s important to understand that TDD is not always the right tool for the job.
In particular, when you aren’t at all sure how to solve a given programming problem,
it’s often useful to skip the tests and write only application code, just to get a sense of
what the solution will look like. (In the language of Extreme Programming (XP), this
exploratory step is called a spike.) Once you see the general shape of the solution, you
can then use TDD to implement a more polished version.

One way to proceed in test-driven development is a cycle known as “Red, Green,
Refactor”. The first step, Red, refers to writing a failing test, which many test tools
indicate with the color red. The next step, Green, refers to a passing test, indicated with
the color (wait for it) green. Once we have a passing test (or set of tests), we are free
to refactor our code, changing the form (eliminating duplication, for example) without
changing the function.

We don’t have any colors yet, so let’s get started toward Red. RSpec (and testing
in general) can be a little intimidating at first, so we’ll use the tests generated by rails
generate controller Pages in Listing 3.4 to get us started. Since I'm not partial
to separate tests for views or helpers, which I've found to be either brittle or redundant,
our first step is to remove them. If you’re using Git, you can do this as follows:

$ git rm -r spec/views
$ git rm -r spec/helpers

Otherwise, remove them directly:

$ rm -rf spec/views
$ rm -rf spec/helpers

We'll handle tests for views and helpers directly in the controller tests starting in
Section 3.3.

To get started with RSpec, take a look at the Pages controller spec'” we just generated
(Listing 3.10).

12. In the context of RSpec, tests are often called specs, but for simplicity I'll usually stick to the term “test”—
except when referring to a file such as pages_controller_spec, in which case I'll write “Pages controller
spec”.

88

Listing 3.10 The generated Pages controller spec.
spec/controllers/pages_controller_spec.rb

Chapter 3: Mostly Static Pages

require 'spec_helper'

describe PagesController do

describe "GET 'home'" do
it "should be successful" do
get 'home’
response.should be_success
end
end

describe "GET 'contact'" do
it "should be successful" do
get 'contact'
response.should be_success
end
end
end

This code is pure Ruby, but even if you've studied Ruby before it probably won’t

look very familiar. This is because RSpec uses the general malleability of Ruby to define

a domain-specific language (DSL) built just for testing. The important point is that you

do not need to understand RSpec’s syntax to be able to use RSpec. It may seem like magic

at first, but RSpec is designed to read more or less like English, and if you follow the

examples from the generate script and the other examples in this tutorial you'll pick it

up fairly quickly.

Listing 3.10 contains two describe blocks, each with one example (i.c., a block

starting with it "..." do). Let’s focus on the first one to get a sense of what it does:

describe "GET 'home'" do
it "should be successful" do
get 'home'
response.should be_success
end
end

The first line indicates that we are describing a GET operation for the home action.

This is just a description, and it can be anything you want; RSpec doesn’t care, but you

3.2 Owur First Tests 89

and other human readers probably do. In this case, "GET ‘home’" indicates that the
test corresponds to an HTTP GET request, as discussed in Box 3.1. Then the spec says
that when you visit the home page, it should be successful. As with the first line, what
goes inside the quote marks is irrelevant to RSpec, and is intended to be descriptive to
human readers. The third line, get “home’, is the first line that really does something.
Inside of RSpec, this line actually submits a GET request; in other words, it acts like a
browser and hits a page, in this case /pages/home. (It knows to hit the Pages controller
automatically because this is a Pages controller test; it knows to hit the home page because
we tell it to explicitly.) Finally, the fourth line says that the response of our application
should indicate success (i.e., it should return a status code of 200; see Box 3.2).

Box 3.2 HTTP response codes

After a client (such as a web browser) sends a request corresponding to one of
the HTTP verbs (Box 3.1), the web server responds with a numerical code indicat-
ing the HTTP status of the response. For example, a status code of 200 means
““success”, and a status code of 301 means ““permanent redirect”. If you install curl,
a command-line client that can issue HTTP requests, you can see this directly at, e.g.,
www . google. com (Where the --head flag prevents curl from returning the whole

page):

$ curl --head www.google.com
HTTP/1.1 200 OK

Here Google indicates that the request was successful by returning the status
200 OK. In contrast, google.com is permanently redirected (to www.google.com,
naturally), indicated by status code 301 (a ““301 redirect’):

S curl --head google.com
HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/

(Note: The above results may vary by country.)
When we write response.should be_success in an RSpec test, RSpec verifies
that our application’s response to the request is status code 200.

www.google.com
www.google.com
www.google.com
http://www.google.com/

920 Chapter 3: Mostly Static Pages

Now it’s time to run our tests. There are several different and mostly equivalent ways
to do this.!> One way to run all the tests is to use the rspec script at the command line

as follows:!4

$ rspec spec/

Finished in 0.07252 seconds

2 examples, 0 failures

(Unfortunately, lots of things can go wrong at this point. If any test fails, be sure that
you’ve migrated the database with rake db:migrate as described in Section 1.2.5.
If RSpec doesn’t work at all, try running bundle exec rspec spec/ instead of just
rspec spec/. If that fails, try uninstalling and reinstalling it:

$ gem uninstall rspec rspec-rails
$ bundle install

If it still doesn’t work and you’re using RVM, try removing the Rails Tutorial gemset

and reinstalling the gems:

rvm gemset delete rails3tutorial

rvm --create use 1.9.2@rails3tutorial
rvm --default 1.9.2@rails3tutorial
gem install rails -v 3.0.1

bundle install

w” v » 0

If it still doesn’t work, I’'m out of ideas.)

When running rspec spec/, rspec is a program provided by RSpec, while spec/
is the directorywhose specs you want to run. You can also run only the specs in a particular
subdirectory. For example, this command runs only the controller specs:

13. Most IDEs also have an interface to testing, but as noted in Section 1.2.1 T have limited experience with
those tools.

14. You can also run rake spec, which is basically equivalent. (Annoyingly, if you want to run rake spec
here you have to run rake db:migrate first, even though the tests in this chapter don’t require a database.)
When something goes wrong, rspec spec/ will show the stack trace, whereas rake spec doesn’t show the
stack trace by default. Since the stack trace is often useful in debugging, rspec spec/ is a prudent default.

3.2 Our First Tests 91

$ rspec spec/controllers/
Finished in 0.07502 seconds

2 examples, 0 failures

You can also run a single file:

$ rspec spec/controllers/pages_controller spec.rb
Finished in 0.07253 seconds

2 examples, 0 failures

The results of all three commands are the same since the Pages controller spec is currently
our only test file. Throughout the rest of this book, I won’t usually show the output of
running the tests, but you should run rspec spec/ (or one of its variants) regularly
as you follow along—or, better yet, use Autotest to run the test suite automatically.
Speaking of which. ..

If you've installed Autotest, you can run it on your RSpec tests using the autotest
command:

$ autotest

If you're using a Mac with Growl notifications enabled, you should be able to
replicate my setup, shown in Figure 3.6. With Autotest running in the background and
Growl notifications telling you the status of your tests, TDD can be positively addictive.

Spork
You may have noticed that the overhead involved in running a test suite can be consid-
erable. This is because each time RSpec runs the tests it has to reload the entire Rails

15 aims to solve this problem. Spork loads the envi-

environment. The Spork test server
ronment once, and then maintains a pool of processes for running future tests. Spork is

particularly useful when combined with Autotest.

15. A sporkis a combination spoon-fork. My guess is that the project’s name is a pun on Spork’s use of POSIX

forks.

92 Chapter 3: Mostly Static Pages

’ SAMPLE_APP: All RSpec
examples passed.
2 exampes

(s NeX®) ~/rails_projects/sample_app =
/Users/mhartl/.rvm/rubies/ruby-1.8.7-pl74/bin/ruby /Users/mhartl/.rvm/gems/ruby-
1.8.7-pl74/gems/rspec-1.3.0/bin/spec --autospec /Users/mhartl/rails_projects/sam
ple_app/spec/controllers/pages_controller_spec.rb -0 spec/spec.opts

Finished in ©,136817 seconds

Figure 3.6 Autotest (via autotest) in action, with a Growl notification.

Configuring Spork and getting it to work can be difficult, and this is a rather advanced
topic; in particular, as of this writing Spork doesn’t officially support Rails 3, so this
section is really just a collection of hacks. Nevertheless, the performance boost due to
Spork is considerable, so I recommend giving it a shot at some point. (You'll have to
rely on the Spork website and Google searches if these directions don’t work for you.)
If you get stuck, don’t hesitate to skip this section for now.

The first step is to add the spork gem dependency to the Gemfile (Listing 3.11).

Listing 3.11 A Gemfile for the demo app.

source 'http://rubygems.org"'

gem 'rails', '3.0.0°'
gem 'sglite3-ruby', '1.2.5', :require => 'sglite3'

http://rubygems.org

3.2 Our First Tests 93

group :development do
gem 'rspec-rails', '2.0.1"'
end

group :test do

gem 'rspec', '2.0.1"'
gem 'spork', '0.8.4'
end

Then install it:

$ bundle install

Next, bootstrap the Spork configuration:

$ spork --bootstrap

Now we need to edit the RSpec configuration file, spec/spec_helper.rb, so that
the environment gets loaded in a prefork block, which arranges for it to be loaded only
once (Listing 3.12). Note: Only use this code if you are also using Spork. If you try to
use Listing 3.12 without Spork, your application test suite will not run.

Listing 3.12 Adding environment loading to the Spork.prefork block.
spec/spec_helper.rb

require 'rubygems'
require 'spork'

Spork.prefork do
Loading more in this block will cause your tests to run faster. However,
1f you change any configuration or code from libraries loaded here, you'll
need to restart spork for it take effect.
ENV["RAILS_ENV"] ||= 'test’
unless defined? (Rails)
require File.dirname(__FILE__) + "/../config/environment"

end

94 Chapter 3: Mostly Static Pages

require 'rspec/rails'
Requires supporting files with custom matchers and macros, etc,
in ./support/ and its subdirectories.

Dir["#{File.dirname(__FILE__)}/support/**/*.rb"].each {|f| require f}

Rspec.configure do |config]|

== Mock Framework

#

If you prefer to use mocha, flexmock or RR, uncomment the appropriate line:
#

config.mock_with :mocha

config.mock with :flexmock

config.mock_with :rr

config.mock _with :rspec

config. fixture_path = "#{::Rails.root}/spec/fixtures"

If you're not using ActiveRecord, or you'd prefer not to run each of your
examples within a transaction, comment the following line or assign false
instead of true.

config.use_transactional_ fixtures = true

Part of a Spork hack. See http://bit.ly/arY19y
Emulate initializer set_clear_dependencies_hook in
railties/lib/rails/application/bootstrap.rb
ActiveSupport: :Dependencies.clear
end
end

Spork.each_run do
end

Note that we've also added the line

ActiveSupport: :Dependencies.clear

at the end of the Rspec.configure block. This is to work around the current lack
of Rails 3 support in Spork. (As of this writing, Spork doesn’t reload the application
files when using Autotest, leading to the absurd situation of not being able to get, say,
a failing Users controller spec example to pass by editing the Users controller. This
undermines TDD just a bit.) To complete the workaround, we also need to add a few

http://bit.ly/arY19y

3.2 Our First Tests 95

lines to config/application.rb (Listing 3.13). Noze: As in the case of Listing 3.12,

only use this code if you are also using Spork.

Listing 3.13 The last part of the hack needed to get Spork to run with Rails 3.
config/application.rb

require File.expand_path('../boot', __FILE_)
require 'rails/all’

If you have a Gemfile, require the gems listed there, including any gems
you've limited to :test, :development, or :production.
Bundler.require(:default, Rails.env) if defined? (Bundler)

module SampleApp
class Application < Rails::Application

Part of a Spork hack. See http://bit.ly/arY19y
if Rails.env.test?
initializer :after => :initialize_dependency_mechanism do
Work around initializer in railties/lib/rails/application/bootstrap.rb
ActiveSupport: :Dependencies.mechanism = :load
end
end
end
end

Before running Spork, we can get a baseline for the testing overhead by timing our

test suite as follows:

$ time rspec spec/

Finished in 0.09606 seconds
2 examples, 0 failures

real Om7.445s
user Om5.248s
sys Oml.475s

http://bit.ly/arY19y

96 Chapter 3: Mostly Static Pages

Here the test suite takes more than seven seconds to run even though the actual tests
run in under a tenth of a second. To speed this up, we can open a dedicated terminal
window, navigate to the Rails root directory, and then start a Spork server:

$ spork

Using RSpec

Loading Spork.prefork block...

Spork is ready and listening on 8989!

In another terminal window, we can now run our test suite with the --drb option16

and verify that the environment-loading overhead is greatly reduced:

$ time rspec --drb spec/

Finished in 0.10519 seconds
2 examples, 0 failures

real 0m0.803s
user Om0.354s
sys Om0.171s

As expected, the overhead has been dramatically reduced.

To run RSpec and Spork with Autotest, we need to configure RSpec to use the --drb
option by default, which we can arrange by adding it to the .rspec configuration file
in the Rails root directory (Listing 3.14).

Listing 3.14 Adding the —-drb option to the . rspec file.

--colour
--drb

With this updated . rspec file, the test suite should run as quickly as before, even without
the explicit --drb option:

16. DRb stands for “Distributed Ruby”.

3.2 Our First Tests 97
$ time rspec spec/

Finished in 0.10926 seconds
2 examples, 0 failures

real 0m0.803s
user Om0.355s
sys Om0.171s

Of course, running time here is just for purposes of illustration; normally, you just run
$ rspec spec/

or

$ autotest

without the time command.

One word of advice when using Spork: if your tests are failing when you think
they should be passing, the problem might be the Spork prefork loading, which can
sometimes prevent necessary files from being re-loaded. When in doubt, quit the Spork

server with Control-C and restart it:

$ spork

Using RSpec

Loading Spork.prefork block...

Spork is ready and listening on 8989!
e

$ spork

Red
Now let’s get to the Red part of the Red-Green cycle by writing a failing test for the
about page. Following the models from Listing 3.10, you can probably guess the right

test (Listing 3.15).

98 Chapter 3: Mostly Static Pages

Listing 3.15 The Pages controller spec with a failing test for the About page.
spec/controllers/pages_controller_spec.rb

require 'spec_helper'

describe PagesController do

render_views

describe "GET 'home'" do
it "should be successful" do

get 'home’
response.should be_success
end
end

describe "GET 'contact'" do
it "should be successful" do
get 'contact'
response.should be_success
end
end

describe "GET ‘'about'" do
it "should be successful" do
get ‘'about'
response.should be_success
end
end
end

Note that we’ve added a line to tell RSpec to render the views inside the controller tests.
In other words, by default RSpec just tests actions inside a controller test; if we want it
also to render the views, we have to tell it explicitly via the second line:

describe PagesController do
render_views

This ensures that if the test passes, the page is really there.

3.2 Our First Tests 99

80O
[sampl
siF

@

_app (static-pages)]$ rspec

1) PagesController GET 'about' should be successful

Failure/Error: get ‘about’

No route matches {:controller=-"pages", :action=>"about"}

/Users/mhartl/.rvm/gems/ruby-1.9.2-head®rails3beta/gems/actionpack-3.0.0.b
eta4/lib/action_dispatch/routing/route_set.rb:385:in “rescue in generate’

/Users/mhartl/.rvm/gems/ruby-1.9.2-head®rails3beta/gems/actionpack-3.0.0.b
eta4/1ib/action_dispatch/routing/route_set.rb:373:in "generate’

/Users/mhartl/.rvm/gems/ruby-1.9.2-head@rails3beta/gems/actionpack-3.0.0.b
eta4/lib/action_dispatch/routing/route_set.rb:418:in "generate’

/Users/mhartl/.rvm/gems/ruby-1.9.2-head®rails3beta/gems/actionpack-3.90.0.b
eta4/1ib/action_dispatch/routing/route_set.rb:414:in "generate_extras'

/Users/mhartl/.rvm/gems/ruby-1.9.2-head®rails3beta/gems/actionpack-3.0.0.b
eta4/1ib/action_dispatch/routing/route_set.rb:41@:in "extra_keys'

/Users/mhartl/.rvm/gems/ruby-1.9.2-head@rails3beta/gems/actionpack-3.0.0.b
eta4/lib/action_controller/test_case.rb:126:in "assign_parameters’

/Users/mhartl/.rvm/gems/ruby-1.9.2-head®rails3beta/gems/actionpack-3.0.0.b
eta4/1ib/action_controller/test_case.rb:382:in “process’

/Users/mhartl/.rvm/gems/ruby-1.9.2-head@rails3beta/gems/actionpack-3.0.0.b
eta4/lib/action_controller/test_case.rb:33@:in "get’'

./spec/controllers/pages_controller_spec.rb:21:in "block (3 levels) in <to
p (required)>'

Finished in ©.@8847 seconds
3 examples, 1 failures
[sample_app (static-pages)]s l

Figure 3.7 Failing spec for the About page using rspec spec/.

The new test attempts to get the about action, and indicates that the resulting
response should be a success. By design, it fails (with a red error message), as seen in
Figure 3.7 (rspec spec/) and Figure 3.8 (autotest). (If you test the views in the
controllers as recommended in this tutorial, it’s worth noting that changing the view
file won’t prompt Autotest to run the corresponding controller test. There’s probably a
way to configure Autotest to do this automatically, but usually I just just switch to the
controller and press “space-backspace” so that the file gets marked as modified. Saving
the controller then causes Autotest to run the tests as desired.)

This is Red. Now let’s get to Green.

100 Chapter 3: Mostly Static Pages

SAMPLE_APP: Some RSpec

examples failed.
1 o1 3 examples tased

CXeXe) ~/rails_projects/sample_app =
/Users/mhartl/.rvm/rubies/ruby-1.8.7-pl74/bin/ruby /Users/mhartl/.rvm/gems/ruby-
1.8.7-pl74/gems/rspec-1.3.0/bin/spec --autospec /Users/mhartl/rails_projects/sam
ple_app/spec/controllers/pages_controller_spec.rb -0 spec/spec.opts

F

Y]

ActionController::UnknownAction in 'PagesController GET "about' should be succes
sful’

No action responded to about. Actions: contact, help, and home
/Users/mhartl/rails_projects/sample_app/spec/controllers/pages_controller_spec.r

b:43:
Finished in ©.142924 seconds

3 examples, 1 failure

Figure 3.8 Failing spec for the About page using Autotest.

Green
Recall from Section 3.1.2 that we can generate a static page in Rails by creating an action
and corresponding view with the page’s name. In our case, the About page will first need
an action called about in the Pages controller. Having written a failing test, we can now
be confident that, in getting it to pass, we will actually have created a working about
page.

Following the models provided by home and contact from Listing 3.6, let’s first
add an about action in the Pages controller (Listing 3.16).

Listing 3.16 The Pages controller with added about action.
app/controllers/pages_controller.rb

class PagesController < ApplicationController

def home

3.2 Our First Tests 101

end

def contact
end

def about
end
end

Next, we’ll add the about action to the routes file (Listing 3.17).

Listing 3.17 Adding the about route.
config/routes.rb

SampleApp: :Application.routes.draw do
get "pages/home"
get "pages/contact"
get "pages/about"

end

Finally, we’ll add the about view. Eventually we’ll fill it with something more infor-
mative, but for now we’ll just mimic the content from the generated views (Listing 3.7
and Listing 3.8) for the about view (Listing 3.18).

Listing 3.18 A stub About page.
app/views/pages/about.html.erb

<hl>Pages#about</hl>
<p>Find me in app/views/pages/about.html.erb</p>

Running the specs or watching the update from Autotest (Figure 3.9) should get us
back to Green:

$ rspec spec/

102 Chapter 3: Mostly Static Pages

&) SAMPLE_APP: All RSpec
examples passed.
3 oxamplos

(s XeXe) ~/rails_projects/sample_app =
/Users/mhartl/.rvm/rubies/ruby-1.8.7-pl74/bin/ruby /Users/mhartl/.rvm/gems/ruby-
1.8.7-pl74/gems/rspec-1.3.0/bin/spec --autospec /Users/mhartl/rails_projects/sam
ple_app/spec/controllers/pages_controller_spec.rb -0 spec/spec.opts

Finished in @.151@31 seconds

Figure 3.9 Autotest back to Green: All tests passing.

Of course, it’s never a bad idea to take a look at the page in a browser to make sure
our tests aren’t completely crazy (Figure 3.10).

Refactor
Now that we’re at Green, we are free to refactor our code by changing its form without
changing its function. Oftentimes code will start to “smell”, meaning that it gets ugly,
bloated, or filled with repetition. The computer doesn’t care, of course, but humans
do, so it is important to keep the code base clean by refactoring frequently. Having a
good (passing!) test suite is an invaluable tool in this regard, as it dramatically lowers the
probability of introducing bugs while refactoring.

Our sample app is a little too small to refactor right now, but code smell seeps
in at every crack, so we won’t have to wait long: we’ll already get busy refactoring in

Section 3.3.3 of this chapter.

3.3 Slightly Dynamic Pages 103

ann Mozilta Firefox =
('\4,' = (c) L xJ Q_p) (L mitp / /localhast 1000/ pages/about D
Pages#about

Find me i app/views/pages/about himl erb

> _Cose &) 2 erroes | 0 warnings %

Figure 3.10 The new (and rather raw) About page (/pages/about).

3.3 Slightly Dynamic Pages

Now that we’ve created the actions and views for some static pages, we’ll make them very
slightly dynamic by adding some content that changes on a per-page basis: we’ll have the
title of each page change to reflect its content. Whether this represents #ruly dynamic
content is debatable, but in any case it lays the necessary foundation for unambiguously
dynamic content in Chapter 8.

(If you skipped the TDD material in Section 3.2, be sure to create an About page
at this point using the code from Listing 3.16, Listing 3.17, and Listing 3.18.)

3.3.1 Testing a Title Change
Our plan is to edit the Home, Contact, and About pages to add the kind of HTML

structure we saw in Listing 3.3, including titles that change on each page. It’s a delicate
matter to decide just which of these changes to test, and in general testing HTML can

104 Chapter 3: Mostly Static Pages

Table 3.1 The (mostly) static pages for the sample app

Page URL Base title Variable title

Home /pages/home "Ruby on Rails Tutorial Sample App" " | Home"

Contact /pages "Ruby on Rails Tutorial Sample App" " | Contact"
/contact

About /pages/about "Ruby on Rails Tutorial Sample App" " | About"

be quite fragile since content tends to change frequently. We’ll keep our tests simple by
just testing for the page titles.

By the end of this section, all three of our static pages will have titles of the form
“Ruby on Rails Tutorial Sample App | Home”, where the last part of the title will vary
depending on the page (Table 3.1). We'll build on the tests in Listing 3.15, adding title
tests following the model in Listing 3.19.

Listing 3.19 A title test.

it "should have the right title" do
get 'home’
response.should have_selector("title",
:content => "Ruby on Rails Tutorial Sample App | Home")
end

This uses the have_ selector method inside RSpec; the documentation for
have_selector is surprisingly sparse, but what it does is to check for an HTML
element (the “selector”) with the given content. In other words, the code

response.should have_selector ("title",
:content => "Ruby on Rails Tutorial Sample App | Home")

checks to see that the content inside the <title></title> tags is "Ruby on Rails
Tutorial Sample App | Home".!” It’s worth mentioning that the content need not
be an exact match; any substring works as well, so that

17. We'll learn in Section 4.3.3 that the :content => "..." syntax is a hash using a symbol as the key.

3.3 Slightly Dynamic Pages 105

response.should have_selector("title", :content => " Home")

will also match the full title.'®

Note that in Listing 3.19 I've broken the material inside have_selector into two
lines; this tells you something important about Ruby syntax: Ruby doesn’t care about
newlines.!” The reason I chose to break the code into pieces is that I prefer to keep lines
of source code under 80 characters for legibility.20 As it stands, I still find this code
formatting rather ugly; Section 3.5 has a refactoring exercise that makes them much
prettier.”!
Adding new tests for each of our three static pages following the model of Listing 3.19

gives us our new Pages controller spec (Listing 3.20).

Listing 3.20 The Pages controller spec with title tests.
spec/controllers/pages_controller_spec.rb

require 'spec_helper'

describe PagesController do

render_views

describe "GET 'home'" do
it "should be successful" do
get 'home'
response.should be_success
end

it "should have the right title" do
get 'home'
response.should have_selector("title",
:content => "Ruby on Rails Tutorial Sample App | Home")
end
end

18. I consider this a step back from RSpec 1.3, which used have_tag in this context, which could be used to
require an exact match. Unfortunately, as of this writing have_tag is not available in RSpec 2.

19. A newline is what comes at the end of a line, starting a, well, new line. In code, it is represented by the
character \n.

20. Actually counting columns could drive you crazy, which is why many text editors have a visual aid to help
you. Consider TextMate, for example; if you take a look back at Figure 1.1, you'll see a small vertical line on
the right to help keep code under 80 characters. (It’s actually at 78 columns, which gives you a little margin for
error.) If you use TextMate, you can find this feature under View > Wrap Column > 78.

21. Rails 2.3/RSpec 1.3 used the shorter have_tag instead of have_selector, and the :content argument
wasn’t necessary either. Newer isn’t always better. . .

106 Chapter 3: Mostly Static Pages

describe "GET 'contact'" do
it "should be successful" do
get 'contact'
response.should be_success
end

it "should have the right title" do
get 'contact'
response.should have_selector("title",
:content =>
"Ruby on Rails Tutorial Sample App | Contact"
end
end

describe "GET 'about'" do
it "should be successful" do
get 'about'
response.should be_success
end

it "should have the right title" do

get ‘'about'

response.should have_selector("title",

:content =>
"Ruby on Rails Tutorial Sample App | About")
end
end
end

Note that the render_views line introduced in Listing 3.15 is necessary for the title
tests to work.
With these tests in place, you should run

$ rspec spec/

or use Autotest to verify that our code is now Red (failing tests).

3.3.2 Passing Title Tests

Now we’ll get our title tests to pass, and at the same time add the full HTML structure
needed to make valid web pages. Let’s start with the Home page (Listing 3.21), using
the same basic HTML skeleton as in the “hello” page from Listing 3.3.

3.3 Slightly Dynamic Pages 107

Note: In Rails 3, the controller generator creates a layout file, whose purpose we will
explain shortly, but which for now you should remove before proceeding:

$ rm app/views/layouts/application.html.erb

Listing 3.21 The view for the Home page with full HTML structure.
app/views/pages/home.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | Home</title>
</head>
<body>
<hl>Sample App</hl>
<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.
</p>
</body>
</html>

Listing 3.21 uses the title tested for in Listing 3.20:

<title>Ruby on Rails Tutorial Sample App | Home</title>

As a result, the tests for the Home page should now pass. We're still Red because of the
failing Contact and About tests, and we can get to Green with the code in Listing 3.22
and Listing 3.23.

Listing 3.22 The view for the Contact page with full HTML structure.
app/views/pages/contact.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | Contact</title>
</head>

108 Chapter 3: Mostly Static Pages

<body>
<hl>Contact</hl>
<p>
Contact Ruby on Rails Tutorial about the sample app at the
feedback page.
</p>
</body>
</html>

Listing 3.23 The view for the About page with full HTML structure.
app/views/pages/about.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | About</title>
</head>
<body>
<hl>About Us</hl>
<p>
Ruby on Rails Tutorial
is a project to make a book and screencasts to teach web development
with Ruby on Rails. This
is the sample application for the tutorial.
</p>
</body>
</html>

These example pages introduce the anchor tag a, which creates links to the given
URL (called an “href”, or “hypertext reference”, in the context of an anchor tag):

Ruby on Rails Tutorial

You can see the results in Figure 3.11.

3.3.3 Instance Variables and Embedded Ruby

We've achieved a lot already in this section, generating three valid pages using Rails
controllers and actions, but they are purely static HTML and hence don’t show off the
power of Rails. Moreover, they suffer from terrible duplication:

3.3 Slightly Dynamic Pages 109

ann Ruby on Rails Tuterial Sample App | Home —
‘1 < -‘r.fc .”'A IIIE] H L e [[lecalhost 3000/ pages /home WY _J

Sample App Home

This is the home page for the Ruby on Rails Tutorial sample application

& 4 “

Figure 3.11 A minimal Home page for the sample app (/pages/home).

+ The page titles are almost (but not quite) exactly the same.
« “Ruby on Rails Tutorial Sample App” is common to all three titles.

+ The entire HTML skeleton structure is repeated on each page.

This repeated code is a violation of the important “Don’t Repeat Yourself” (DRY)
principle; in this section and the next we’ll “DRY out our code” by removing the
repetition.

Paradoxically, we’ll take the first step toward eliminating duplication by first adding
some more: we'll make the titles of the pages, which are currently quite similar, match
exactly. This will make it much simpler to remove all the repetition at a stroke.

The technique involves creating instance variablesinside our actions. Since the Home,
Contact, and About page titles have a variable component, we’ll set the variable @title
(pronounced “at title”) to the appropriate title for each action (Listing 3.24).

110 Chapter 3: Mostly Static Pages

Listing 3.24 The Pages controller with per-page titles.
app/controllers/pages_controller.rb

class PagesController < ApplicationController
def home
@title = "Home"

end

def contact

@title = "Contact"
end
def about

@title = "About"
end

end

A statement such as

@title = "Home"

is an assignment, in this case creating a new variable @title with value "Home". The
at sign @ in @title indicates that it is an instance variable. Instance variables have a
more general meaning in Ruby (see Section 4.2.3), but in Rails their role is primarily to
link actions and views: any instance variable defined in the home action is automatically
available in the home.html .erb view, and so on for other action/view pairs.22

We can see how this works by replacing the literal title “Home” with the contents

of the @title variable in the home .html.erb view (Listing 3.25).

Listing 3.25 The view for the Home page with an Embedded Ruby title.
app/views/pages/home.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | <%= @title $></title>
</head>

22. In fact, the instance variable is actually visible in a7y view, a fact we’ll make use of in Section 8.2.2.

3.3 Slightly Dynamic Pages 111

<body>
<hl>Sample App</hl>
<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.
</p>
</body>
</html>

Listing 3.25 is our first example of Embedded Ruby, also called ERb. (Now you know
why HTML views have the file extension .html.erb.) ERb is the primary mechanism
in Rails for including dynamic content in web pages.** The code

<%= @title %>

indicates using <%= ... %> that Rails should insert the contents of the @title variable,
whatever it may be. When we visit /pages/home, Rails executes the body of the home
action, which makes the assignment @title = "Home", so in the present case

<%= @title %>

gets replaced with “Home”. Rails then renders the view, using ERb to insert the value of
@title into the template, which the web server then sends to your browser as HTML.
The result is exactly the same as before, only now the variable part of the title is generated
dynamically by ERbD.

We can verify that all this works by running the tests from Section 3.3.1 and see
that they still pass. Then we can make the corresponding replacements for the Contact
and About pages (Listing 3.26 and Listing 3.27).

23. There is a second popular template system called Haml, which I personally love, but it’s not quite standard
enough yet for use in an introductory tutorial. If there is sufficient interest, I might produce a Rails Tutorial
screencast series using Haml for the views. This would also allow for an introduction to Sass, Haml’s sister
technology, which if anything is even more awesome than Haml.

112 Chapter 3: Mostly Static Pages

Listing 3.26 The view for the Contact page with an Embedded Ruby title.
app/views/pages/contact.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | <%= @title $></title>
</head>
<body>
<hl>Contact</hl>
<p>
Contact Ruby on Rails Tutorial about the sample app at the
feedback page.
</p>
</body>
</html>

Listing 3.27 The view for the About page with an Embedded Ruby title.
app/views/pages/about.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | <%= @title %></title>
</head>
<body>
<hl>About Us</hl>
<p>
Ruby on Rails Tutorial
is a project to make a book and screencasts to teach web development
with Ruby on Rails. This
is the sample application for the tutorial.
</p>
</body>
</html>

As before, the tests still pass.

3.3.4 Eliminating Duplication with Layouts

Now that we've replaced the variable part of the page titles with instance variables and
ERD, each of our pages looks something like this:

3.3 Slightly Dynamic Pages 113

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | <%= @title $></title>
</head>
<body>
Contents
</body>
</html>

In other words, a// our pages are identical in structure, including even the title (because
of Embedded Ruby), with the sole exception of the contents of each page.

Wouldn’t it be nice if there were a way to factor out the common elements into some
sort of global layout, with the body contents inserted on a per-page basis? Indeed, it would
be nice, and Rails happily obliges using a special file called application.html.erb,
which lives in the 1ayouts directory. To capture the structural skeleton, edit app1i-
cation.html.erb and fill it with the contents of Listing 3.28.

Listing 3.28 The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | <%= @title %></title>
<%= csrf_meta_tag %>
</head>
<body>
<%= yield %>
</body>
</html>

Note here the special line

<%= yield %>

This code is responsible for inserting the contents of each page into the layout. As
with <%= @title %>, the <% ... %> tags indicate Embedded Ruby, and the equals
sign in <%= ... %> ensures that the results of evaluating the expression are inserted at
that exact point in the template. (Don’t worry about the meaning of the word “yield”

114 Chapter 3: Mostly Static Pages

in this context;** what matters is that using this layout ensures that visiting the page
/pages/home converts the contents of home .html.erb to HTML and then inserts it
in place of <= yield %>.

Now that we have a site-wide layout, we’ve also taken this opportunity to add a
security feature to each page. Listing 3.28 adds the code

<%= csrf_meta_tag %>

which uses the Rails method csrf_meta_tag to prevent cross-site request forgery
(CSRF), a type of malicious web attack. Don’t worry about the details (I don’t); just
know that Rails is working hard to keep your application secure.

Of course, the views in Listing 3.25, Listing 3.26, and Listing 3.27 are still filled
with all the HTML structure we just hoisted into the layout, so we have to rip it out,
leaving only the interior contents. The resulting cleaned-up views appear in Listing 3.29,
Listing 3.30, and Listing 3.31.

Listing 3.29 The Home view with HTML structure removed.
app/views/pages/home.html.erb

<hl>Sample App</hl>

<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.

</p>

Listing 3.30 The Contact view with HTML structure removed.
app/views/pages/contact.html.erb

<hl>Contact</hl>
<p>

Contact Ruby on Rails Tutorial about the sample app at the

feedback page.
</p>

24. If you've studied Ruby before, you might suspect that Rails is yielding the contents to a block, and your
suspicion would be correct. But, as far as developing web applications with Rails, it doesn’t matter, and I've
honestly never given the meaning of <%= yield %> a second thought—or even a first one.

3.4 Conclusion 115

Listing 3.31 The About view with HTML structure removed.
app/views/pages/about.html.erb

<hl>About Us</hl>
<p>
Ruby on Rails Tutorial
is a project to make a book and screencasts to teach web development
with Ruby on Rails. This
is the sample application for the tutorial.
</p>

With these views defined, the Home, Contact, and About pages are exactly the
same as before—i.e., we have successfully refactored them—but they have much less
duplication. And, as required, the tests still pass.

3.4 Conclusion

Seen from the outside, this chapter hardly accomplished anything: we started with static
pages, and ended with. . . mostlystatic pages. Butappearances are deceiving: by developing
in terms of Rails controllers, actions, and views, we are now in a position to add arbitrary
amounts of dynamic content to our site. Seeing exactly how this plays out is the task for
the rest of this tutorial.

Before moving on, let’s take a minute to commit our changes and merge them into
the master branch. Back in Section 3.1.2 we created a Git branch for the development
of static pages. If you haven’t been making commits as we've been moving along, first
make a commit indicating that we’ve reached a stopping point:

$ git add .
$ git commit -am "Done with static pages"

Then merge the changes back into the master branch using the same technique as in
Section 1.3.5:

$ git checkout master
$ git merge static-pages

Once you reach a stopping point like this, it’s usually a good idea to push your code
up to a remote repository (which, if you followed the steps in Section 1.3.4, will be
GitHub):

116 Chapter 3: Mostly Static Pages

$ rspec spec/
$ git push

If you like, at this point you can even deploy the updated application to Heroku:

$ rspec spec/
$ git push heroku

Note that in both cases I've run rspec spec/, just to be sure that all the tests still pass.
Running your tests before pushing or deploying is a good habit to cultivate.

3.5 Exercises

1. Make a Help page for the sample app. First write a test for the existence of a page
at the URL /pages/help. Then write a second test for the title “Ruby on Rails
Tutorial Sample App | Help”. Get your tests to pass, and then fill in the Help page
with the content from Listing 3.32.

2. You may have noticed some repetition in the Pages controller spec (Listing 3.20). In
particular, the base title, “Ruby on Rails Tutorial Sample App”, is the same for every
title test. Using the RSpec before (:each) facility, which executes a block of code
before each test case, fill in Listing 3.33 to define a @base_title instance variable
that eliminates this duplication. (This code uses two new elements: a symbol, : each,
and the string concatenation operator +. We'll learn more about both in Chapter 4,
and we'll see before (:each) again in Section 6.2.1.) Note that, with the base
title captured in an instance variable, we are now able to align :content with the
first character inside each left parenthesis (. This is my preferred convention for
formatting code broken into multiple lines.

Listing 3.32 Code for a proposed Help page.
app/views/pages/help.html.erb

<hl>Help</hl>
<p>
Get help on Ruby on Rails Tutorial at the
Rails Tutorial help page.

3.5 Exercises

To get help on this sample app, see the

Rails Tutorial book.

</p>

Listing 3.33 The Pages controller spec with a base title.
spec/controllers/pages_controller_spec.rb

require 'spec_helper'

describe PagesController do

render_views

before(:each) do
#
Define @base_title here.
#

end

describe "GET 'home'" do
it "should be successful" do
get 'home'
response.should be_success
end

it "should have the right title" do
get 'home'
response.should have_selector("title",
:content => @base_title +
end
end

describe "GET 'contact'" do
it "should be successful" do
get 'contact'
response.should be_success
end

it "should have the right title" do
get 'contact'
response.should have_selector("title",
:content => @base_title +
end
end

describe "GET 'about'" do
it "should be successful" do

Home")

| Contact")

118 Chapter 3: Mostly Static Pages

get 'about'
response.should be_success
end

it "should have the right title" do
get 'about'
response.should have_selector ("title",
:content => @base_title + " | About")
end
end
end

CHAPTER 4

Rails-Flavored Ruby

Grounded in examples from Chapter 3, this chapter explores some elements of Ruby
important for Rails. Ruby is a big language, but fortunately the subset needed to be
productive as a Rails developer is relatively small. Moreover, this subset is different from
the usual approaches to learning Ruby, which is why, if your goal is making dynamic
web applications, I recommend learning Rails first, picking up bits of Ruby along the
way. To become a Rails expert, you need to understand Ruby more deeply, and this book
gives you a good foundation for developing that expertise. As noted in Section 1.1.1,
after finishing Rails Tutorial 1 suggest reading a pure Ruby book such as Beginning Ruby,
The Well-Grounded Rubyist, or The Ruby Way.

This chapter covers a lot of material, and it’s OK not to get it all on the first pass.
Ill refer back to it frequently in future chapters.

4.1 Motivation

As we saw in the last chapter, it’s possible to develop the skeleton of a Rails application,
and even start testing it, with essentially no knowledge of the underlying Ruby language.
We did this by relying on the generated controller and test code and following the
examples we saw there. This situation can’t last forever, though, and we’ll open this
chapter with a couple of additions to the site that bring us face-to-face with our Ruby
limitations.

4.1.1 Atitle Helper

When we last saw our new application, we had just updated our mostly static pages to
use Rails layouts to eliminate duplication in our views (Listing 4.1).

119

120 Chapter 4: Rails-Flavored Ruby

Listing 4.1 The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Ruby on Rails Tutorial Sample App | <%= @title $></title>
<%= csrf_meta_tag %>
</head>
<body>
<%= yield %>
</body>
</html>

This layout works well, but there’s one part that could use a little polish. Recall that

the title line

Ruby on Rails Tutorial Sample App | <%= @title %>

relies on the definition of @title in the actions, such as

class PagesController < ApplicationController

def home
@title = "Home"
end

But what if we don’t define an @title variable? It’s a good convention to have a base
title we use on every page, with an optional variable title if we want to be more specific.
We've almost achieved that with our current layout, with one wrinkle: as you can see if
you delete the @title assignment in one of the actions, in the absence of an @title

variable the title appears as follows:

Ruby on Rails Tutorial Sample App |

4.1 Motivation 121

In other words, there’s a suitable base title, but there’s also a trailing vertical bar character
| at the end of the title.

One common way to handle this case is to define a helper, which is a function
designed for use in views. Let’s define a title helper that returns a base title, “Ruby
on Rails Tutorial Sample App”, if no @title variable is defined, and adds a vertical bar
followed by the variable title if @title is defined (Listing 4.2).!

Listing 4.2 Defining a title helper.
app/helpers/application helper.rb

module ApplicationHelper

Return a title on a per-page basis.
def title
base_title = "Ruby on Rails Tutorial Sample App"
if etitle.nilv?
base_title
else
"#{base_title} | #{@title}"
end
end
end

This may look fairly simple to the eyes of an experienced Rails developer, but it’s ful/ of

new Ruby ideas: modules, comments, local variable assignment, booleans, control flow,

string interpolation, and return values. We’'ll cover each of these ideas in this chapter.
Now that we have a helper, we can use it to simplify our layout by replacing

<title>Ruby on Rails Tutorial Sample App | <%= @title %></title>
with

<title><%= title %></title>

1. If a helper is specific to a particular controller, you should put it in the corresponding helper file; for
example, helpers for the Pages controller generally go in app/helpers/pages_helper.rb. In our case, we
expect the title helper to be used on all the site’s pages, and Rails has a special helper file for this case:
app/helpers/application_helper.rb.

122 Chapter 4: Rails-Flavored Ruby

as seen in Listing 4.3. Note in particular the switch from the instance variable @title
to the helper method title (without the @ sign). Using Autotest or rspec spec/, you
should verify that the tests from Chapter 3 still pass.

Listing 4.3 The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title><%= title $%></title>
<%= csrf_meta_tag %>
</head>
<body>
<%= yield %>
</body>
</html>

4.1.2 Cascading Style Sheets

There’s a second addition to our site that seems simple but adds several new Ruby
concepts: including style sheets into our site layout. Though this is a book in web
development, not web design, we’ll be using cascading style sheets (CSS) to give the
sample application some minimal styling, and we’ll use the Blueprint CSS framework
as a foundation for that styling.

To get started, download the latest Blueprint CSS. (For simplicity, I'll assume you
download Blueprint to a Downloads directory, but use whichever directory is most
convenient.) Using either the command line or a graphical tool, copy the Blueprint
CSS directory blueprint into the public/stylesheets directory, a special directory
where Rails keeps stylesheets. On my Mac, the commands looked like this, but your
details may differ:

S cp -r ~/Downloads/joshuaclayton-blueprint-css-<version number>/blueprint \
> public/stylesheets/

Here cp is the Unix copy command, and the -r flag copies recursively (needed for
copying directories). (As mentioned briefly in Section 49, the tilde ~ means “home
directory” in Unix.) Note: You should 7ot paste in the > character to your terminal. If
you paste in the first line with a backslash and hit return, you will see >, indicating a line

4.1 Motivation 123

continuation. You should then paste in the second line and hit return again to execute
the command. Also note that you’ll have to fill in the version number by hand, since
that changes as Blueprint gets updated. Finally, be sure that you dont type

S cp -r ~/Downloads/joshuaclayton-blueprint-css-<version number>/blueprint/ \
> public/stylesheets/

which has a trailing slash in . ../blueprint/. This puts the contents of the Blueprint
directory into public/stylesheets instead of moving the whole directory.

Once you have the stylesheets in the proper directory, Rails provides a helper for
including them on our pages using Embedded Ruby (Listing 4.4).

Listing 4.4 Adding stylesheets to the sample application layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title><%= title $%></title>
<%= csrf_meta_tag %>
<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' $%>
<%= stylesheet_link_tag 'blueprint/print', :media => 'print' %>
</head>
<body>
<%= yield %>
</body>
</html>

Let’s focus on the new lines:

<%= stylesheet_link_ tag 'blueprint/screen', :media => 'screen' $%>
<%= stylesheet_link tag 'blueprint/print', :media => 'print' %>

These use the built-in Rails helper stylesheet_link_tag, which you can read more
about at the Rails APL.? The first stylesheet_link tag line includes the stylesheet

2. I don’t provide links to the API because they have a tendency to go out of date quickly. Let Google be your
guide. Incidentally, “API” stands for “application programming interface.”

124 Chapter 4: Rails-Flavored Ruby

Ruby on Rails Tutorial Sample App | Home =)

http / /localbast 1000/ pages home o, vn

Tres & the NOM DagE for the Buly on Fass TUIORA! SAMEE SOOICATON.

Figure 4.1 The Home page with the new Blueprint stylesheets.

blueprint/screen.css for screens (e.g., computer monitors), and the second in-
cludes blueprint/print.css for printing. (The helper automatically appends the
.css extension to the filenames if absent, so I've left it off for brevity.) As with the
title helper, to an experienced Rails developer these lines look simple, but there are
at least four new Ruby ideas: built-in Rails methods, method invocation with miss-
ing parentheses, symbols, and hashes. In this chapter we’ll cover these new ideas as
well. (We'll see the HTML produced by these stylesheet includes in Listing 4.6 of
Section 4.3.4.)

By the way, with the new stylesheets the site doesn’t look much different than before,
but it’s a start (Figure 4.1). We'll build on this foundation starting in Chapter 5.

3. If you're impatient, feel free to check out the Blueprint CSS Quickstart tutorial.

4.2 Strings and Methods 125

4.2 Strings and Methods

Our principal tool for learning Ruby will be the Rails console, which is a command-line
tool for interacting with Rails applications. The console itself is built on top of interactive
Ruby (irb), and thus has access to the full power of Ruby. (As we’ll see in Section 4.4 .4,
the console also has access to the Rails environment.) Start the console at the command
line as follows:*

$ rails console
Loading development environment (Rails 3.0.1)
>>

By default, the console starts in a development environment, which is one of three separate
environments defined by Rails (the others are restand production). This distinction won’t
be important in this chapter; we’ll learn more about environments in Section 6.3.1.

The console is a great learning tool, and you should feel free to explore—don’t worry,
you (probably) won’t break anything. When using the console, type Ctrl-C if you get
stuck, or Crl-D to exit the console altogether.

Throughout the rest of this chapter, you might find it helpful to consult the Ruby
APL’ It’s packed (perhaps even 00 packed) with information; for example, to learn more
about Ruby strings you can look at the Ruby API entry for the string class.

4.2.1 Comments

Ruby comments start with the pound sign # and extend to the end of the line. Ruby (and
hence Rails) ignores comments, but they are useful for human readers (including, often,
the original author!). In the code

Return a title on a per-page basis.
def title

the first line is a comment indicating the purpose of the subsequent function definition.

4. Recall that the console prompt will probably be something like ruby-1.9.2-head >, but the examples
use >> since Ruby versions will vary.

5. As with the Rails API, Ruby API links go out of date, though not quite as fast. Google is still your guide.

126 Chapter 4: Rails-Flavored Ruby

You don’t ordinarily include comments in console sessions, but for instructional
purposes I'll include some comments in what follows, like this:

$ rails console
>> 17 + 42 # Integer addition
=> 59

If you follow along in this section typing or copying-and-pasting commands into your
own console, you can of course omit the comments if you like; the console will ignore

them in any case.

4.2.2 Strings

Strings are probably the most important data structure for web applications, since web
4 p y p

pages ultimately consist of strings of characters sent from the server to the browser. Let’s
get started exploring strings with the console, this time started with rails e, which is

a shortcut for rails console:

$ rails c

>> " # An empty string
—s wu

>> "foo" # A nonempty string
=> "foo"

These are string literals (also, amusingly, called literal strings), created using the double
quote character . The console prints the result of evaluating each line, which in the case
of a string literal is just the string itself.

We can also concatenate strings with the + operator:

>> "foo" + "bar" # String concatenation
=> "foobar"

Here the result of evaluating "£oo" plus "bar™ is the string "£oobar".°

6. For more on the origins of “foo” and “bar”—and, in particular, the possible non-relation of “foobar” to
“FUBAR”—see the Jargon File entry on “foo”.

4.2 Strings and Methods 127

Another way to build up strings is via interpolation using the special syntax #{}:”

>> first_name = "Michael" # Variable assignment
=> "Michael"
>> "#{first_name} Hartl" # String interpolation

=> "Michael Hartl"

Here we've assigned the value "Michael" to the variable first_name and then inter-
polated it into the string "#{first_name} Hartl". We could also assign both strings
a variable name:

>> first_name = "Michael"
=> "Michael"

>> last_name = "Hartl"
=> "Hartl"
>> first_name + " " + last_name # Concatenation, with a space in between

=> "Michael Hartl"
>> "#{first_name} #{last_name}" # The equivalent interpolation
=> "Michael Hartl"

Note that the final two expressions are equivalent, but I prefer the interpolated version;
having to add the single space " " seems a bit awkward.

Printing
To print a string, the most commonly used Ruby function is puts (pronounced “put
ess”, for “put string”):

>> puts "foo" # put string
foo
=> nil

The puts method operates as a side-effect. the expression puts "foo" prints the string
to the screen and then returns literally nothing: ni1 is a special Ruby value for “nothing
at all”. (In what follows, I'll sometimes suppress the => ni1 part for simplicity.)

7. Programmers familiar with Perl or PHP should compare this to the automatic interpolation of dollar sign
variables in expressions like "foo $bar".

128 Chapter 4: Rails-Flavored Ruby

Using puts automatically appends a newline character \n to the output; the related
print method does not:

>> print "foo" # print string (same as puts, but without the newline)
foo=> nil

>> print "foo\n" # Same as puts "foo"

foo

=> nil

Single-Quoted Strings
All the examples so far have used double-quoted strings, but Ruby also supports single-
quoted strings. For many uses, the two types of strings are effectively identical:

>> 'foo' # A single-quoted string
=> "foo"

>> 'foo' + 'bar'

=> "foobar"

There’s an important difference, though; Ruby won’t interpolate into single-quoted
strings:

>> '#{foo} bar' # Single-quoted strings don't allow interpolation
=> "\#{foo} bar"

Note how the console returns values using double-quoted strings, which requires a
backslash to escape characters like #.

If double-quoted strings can do everything that single-quoted strings can do, and
interpolate to boot, what’s the point of single-quoted strings? They are often useful
because they are truly literal, and contain exactly the characters you type. For example,
the “backslash” character is special on most systems, as in the literal newline \n. If you
want a variable to contain a literal backslash, single quotes make it easier:

>> '\n' # A literal 'backslash n' combination
=> "\\n"

4.2 Strings and Methods 129

As with the # character in our previous example, Ruby needs to escape the backslash with
an additional backslash; inside double-quoted strings, a literal backslash is represented
with rwo backslashes.

For a small example like this, there’s not much savings, but if there are lots of things

to escape it can be a real help:

>> 'Newlines (\n) and tabs (\t) both use the backslash character \.'
=> "Newlines (\\n) and tabs (\\t) both use the backslash character \\."

4.2.3 Objects and Message Passing

Everything in Ruby, including strings and even ni1, is an object. We'll see the technical
meaning of this in Section 4.4.2, but I don’t think anyone ever understood objects by
reading the definition in a book; you have to build up your intuition for objects by seeing
lots of examples.

I’s easier to describe what objects do, which is respond to messages. An object like
a string, for example, can respond to the message length, which returns the number of
characters in the string:

>> "foobar".length # Passing the "length" message to a string
=> 6

Typically, the messages that get passed to objects are methods, which are functions defined
on those objects.® Strings also respond to the empty? method:

>> "foobar".empty?
=> false
>> "".empty?

=> true

Note the question mark at the end of the empty? method. This is a Ruby convention
indicating that the return value is boolean: true or false. Booleans are especially useful

8. Apologies in advance for switching haphazardly between function and method throughout this chapter; in
Ruby, they’re the same thing: all methods are functions, and all functions are methods, because everything is
an object.

130 Chapter 4: Rails-Flavored Ruby

for control flow:

>> s = "foobar"

>> if s.empty?

>> "The string is empty"

>> else

>> "The string is nonempty"
>> end

=> "The string is nonempty"

Booleans can also be combined using the && (“and”), | | (“or”), and t (“not”) operators:

>> x = "foo"

=> "foo"

>> y = ""

=> "

>> puts "Both strings are empty" if x.empty? && y.empty?
=> nil

>> puts "One of the strings is empty" if x.empty? || y.empty?
"One of the strings is empty"

=> nil

>> puts "xX is not empty" if !x.empty?

"x is not empty"

Since everything in Ruby is an object, it follows that nil is an object, so it too can
respond to methods. One example is the to_s method that can convert virtually any
object to a string:

>> nil.to_s

=> un

This certainly appears to be an empty string, as we can verify by chaining the messages

we pass to nil:

>> nil.empty?

NoMethodError: You have a nil object when you didn't expect it!
You might have expected an instance of Array.

The error occurred while evaluating nil.empty?

>> nil.to_s.empty? # Message chaining

=> true

4.2 Strings and Methods 131

We see here that the nil object doesn’t itself respond to the empty? method, but
nil.to_s does.

There’s a special method for testing for ni1-ness, which you might be able to guess:

>> "foo".nil?
=> false

>> "" . nil?

=> false

>> nil.nilv?

=> true

If you look back at Listing 4.2, you’ll see that the title helper tests to see if @title
isnil using the nil? method. Thisis a hint that there’s something special about instance
variables (variables with an @ sign), which can best be understood by contrasting them
with ordinary variables. For example, suppose we enter title and @title variables at
the console without defining them first:

>> title # Oops! We haven't defined a title variable.
NameError: undefined local variable or method “title'

>> @title # An instance variable in the console

=> nil

>> puts "There is no such instance variable." if @title.nil?
There is no such instance variable.

=> nil

>> "#{@title}" # Interpolating @title when it's nil

=> un

You can see from this example that Ruby complains if we try to evaluate an undefined
local variable, but issues no such complaint for an instance variable; instead, instance
variables are nil if not defined. This also explains why the code

Ruby on Rails Tutorial Sample App | <%= @title %>

becomes

Ruby on Rails Tutorial Sample App |

132 Chapter 4: Rails-Flavored Ruby

when etitle is nil: Embedded Ruby inserts the string corresponding to the given
variable, and the string corresponding to nil is "».

The last example also shows an alternate use of the if keyword: Ruby allows you to
write a statement that is evaluated only if the statement following if is true. There’s a

complementary unless keyword that works the same way:

>> string = "foobar"
>> puts "The string '#{string}' is nonempty." unless string.empty?
The string 'foobar' is nonempty.

=> nil

It’s worth noting that the nil object is special, in that it is the on/y Ruby object that
is false in a boolean context, apart from false itself:

>> if nil

>> true

>> else

>> false # nil is false
>> end

=> false

In particular, all other Ruby objects are #rue, even 0:

>> if 0

>> true # 0 (and everything other than nil and false itself) is true
>> else

>> false

>> end

=> true

4.2.4 Method Definitions

The console allows us to define methods the same way we did with the home action
from Listing 3.6 or the title helper from Listing 4.2. (Defining methods in the con-
sole is a bit cumbersome, and ordinarily you would use a file, but it’s convenient for

demonstration purposes.) For example, let’s define a function string message that
purp p

4.2 Strings and Methods 133

takes a single argument and returns a message based on whether the argument is empty
or not:

>> def string message (string)

>> if string.empty?

>> "It's an empty string!"
>> else

>> "The string is nonempty."
>> end

>> end

=> nil

>> puts string _message("")

It's an empty string!

>> puts string message ("foobar")
The string is nonempty.

Note that Ruby functions have an implicit return, meaning they return the last statement
evaluated—in this case, one of the two message strings, depending on whether the
method’s argument string is empty or not. Ruby also has an explicit return option;
the following function is equivalent to the one above:

>> def string message (string)

>> return "It's an empty string!" if string.empty?
>> return "The string is nonempty."

>> end

The alert reader might notice at this point that the second return here is actually
unnecessary—being the last expression in the function, the string "The string is
nonempty. " will be returned regardless of the return keyword, but using return in
both places has a pleasing symmetry to it.

4.2.5 Back to the title Helper

We are now in a position to understand the title helper from Listing 4.2:°

9. Well, there will still be one thing left that we don’t understand, which is how Rails ties this all together:
mapping URLs to actions, making the title helper available in views, etc. This is an interesting subject, and I
encourage you to investigate it further, but knowing exactly sow Rails works is not necessary when wusing Rails.
(For a deeper understanding, I recommend 7he Rails 3 Way by Obie Fernandez.)

134 Chapter 4: Rails-Flavored Ruby

module ApplicationHelper

Return a title on a per-page basis. # Documentation comment
def title # Method definition
base_title = "Ruby on Rails Tutorial Sample App" # Variable assignment
if @title.nil? # Boolean test for nil
base_title # Implicit return
else
"#{base_title} | #{@title}" # String interpolation
end
end

end

These elements—function definition, variable assignment, boolean tests, control
flow, and string interpolation—come together to make a compact helper method for use
in our site layout. The final element is module ApplicationHelper: code in Ruby
modules can be mixed in to Ruby classes. When writing ordinary Ruby, you often write
modules and include them explicitly yourself, but in this case Rails handles the inclusion
automatically for us. The result is that the title method is automagically available in

all our views.

4.3 Other Data Structures

Though web apps are ultimately about strings, actually making those strings requires
using other data structures as well. In this section, we’ll learn about some Ruby data
structures important for writing Rails applications.

4.3.1 Arrays and Ranges

An array is just a list of elements in a particular order. We haven’t discussed arrays yet
in Rails Tutorial, but understanding them gives a good foundation for understanding
hashes (Section 4.3.3) and for aspects of Rails data modeling (such as the has_many
association seen in Section 2.3.3 and covered more in Section 11.1.2).

So far we’ve spent a lot of time understanding strings, and there’s a natural way to
get from strings to arrays using the split method:

>> "foo bar baz".split # Split a string into a three-element array
=> ["foo", "bar", "baz"]

4.3 Other Data Structures 135

The result of this operation is an array of three strings. By default, sp1it divides a string
into an array by splitting on whitespace, but you can split on nearly anything else:

>> "fooxbarxbazx".split('x")
=> ["foo", "bar", "baz"]

As is conventional in most computer languages, Ruby arrays are zero-offsez, which
means that the first element in the array has index 0, the second has index 1, and so on:

>> a = [42, 8, 17]

=> [42, 8, 17]

>> al0] # Ruby uses square brackets for array access.
=> 42

>> afll]

=> 8

>> al2]

=> 17

>> a[-1] # Indices can even be negative!

=> 17

We see here that Ruby uses square brackets to access array elements. In addition to this
bracket notation, Ruby offers synonyms for some commonly accessed elements:'°

>> a # Just a reminder of what 'a' is
=> [42, 8, 17]

>> a.first

=> 42

>> a.second

=> 8

>> a.last

=> 17

>> a.last == a[-1] # Comparison using ==

=> true

This last line introduces the equality comparison operator ==, which Ruby shares with
many other languages, along with the associated 1= (“not equal”), etc.:

10. The second method used here isn’t currently part of Ruby itself, but rather is added by Rails. It works in
this case because the Rails console automatically includes the Rails extensions to Ruby.

136

Chapter 4: Rails-Flavored Ruby

= a.length # Like strings, arrays respond to the 'length' method.

x >= 1
true
x <1

false

In addition to length (scen in the first line above), arrays respond to a wealth of

other methods:

>>

a.sort

[8, 17, 42]
a.reverse
[17, 8, 42]
a.shuffle
[17, 42, 8]

You can also add to arrays with the “push” operator, <<:

a << 17 # Pushing 7 onto an array

[42, 8, 17, 7]

>>

a << "foo" << "bar" # Chaining array pushes

[42, 8, 17, 7, "foo", "bar"]

This last example shows that you can chain pushes together, and also that, unlike arrays

in many other languages, Ruby arrays can contain a mixture of different types (in this

case, integers and strings).

the

Before we saw split convert a string to an array. We can also go the other way with
join method:

a

[42, 8, 17, 7, "foo", "bar"]

a.join # Join on nothing
"428177foobar"

a.join(', ') # Join on comma-space

"42, 8, 17, 7, foo, bar"

4.3 Other Data Structures

137

Closely related to arrays are ranges, which can probably most easily be understood

by converting them to arrays using the to_a method:

>> 0..9
=> 0..9
>> 0..9.to_a # Oops, call to_a on 9

ArgumentError: bad value for range
>> (0..9).to_a # Use parentheses to call to_a on the range
= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Though 0. .9 is a valid range, the second expression above shows that we need to add

parentheses to call a method on it.
Ranges are useful for pulling out array elements:

>> a = $w[foo bar baz quux] # Use %w to make a string array
=> ["foo", "bar", "baz", "quux"]

>> al0..2]

=> ["foo", "bar", "baz"]

Ranges also work with characters:

>> ('a'..'e').to_a

=> ["a", "b", "c", "d", "e"]

4.3.2 Blocks

Both arrays and ranges respond to a host of methods that accept blocks, which are

simultaneously one of Ruby’s most powerful and most confusing features:

>> (1..5).each { |i| puts 2 * i }

This code calls the each method on the range (1..5) and passes it the block { |i]|

puts 2 * i }. The vertical bars around the variable name in |i| are Ruby syntax for

a block variable, and it’s up to the method to know what to do with the block; in this

138 Chapter 4: Rails-Flavored Ruby

case, the range’s each method can handle a block with a single local variable, which
we've called i, and it just executes the block for each value in the range.
Curly braces are one way to indicate a block, but there is a second way as well:

>> (1..5).each do |i]
?> puts 2 * i
>> end

Blocks can be more than one line, and often are. In Rails Tutorial we'll follow the
common convention of using curly braces only for short one-line blocks and the do. . ena
syntax for longer one-liners and for multi-line blocks:

>> (1..5).each do |number |
?> puts 2 * number

>> puts '-="'

>> end

Here I've used number in place of i just to emphasize that any variable name will do.

Unless you already have a substantial programming background, there is no shortcut
to understanding blocks; you just have to see them a lot, and eventually you’ll get used
to them.!! Luckily, humans are quite good at making generalizations from concrete
examples; here are a few more, including a couple using the map method:

11. Programming experts, on the other hand, might benefit from knowing that blocks are closures, which are
one-shot anonymous functions with data attached.

4.3 Other Data Structures 139

>> 3.times { puts "Betelgeuse!" } # 3.times takes a block with no variables.
"Betelgeuse!"

"Betelgeuse!"

"Betelgeuse!"

=> 3

>> (1..5).map { [i| i**2 } # The ** notation is for 'power'.

=> [1, 4, 9, 16, 25]

>> %wla b c] # Recall that %w makes string arrays.
=> ["a", "b", "c"]

>> %wla b c].map { |char| char.upcase }

=> ["A", "B", "C"]

As you can see, the map method returns the result of applying the given block to each
element in the array or range.

By the way, we're now in a position to understand the line of Ruby I threw into
Section 1.4.4 to generate random subdomains:

('a'..'z").to_a.shuffle[0..7].join

Let’s build it up step by step:

>> ('a'..'z').to_a # An alphabet array

= ["a", "b", "¢", "4", "e", "£", "g", "h", "i", "j", "k", "1", "m", "n", "o",
"p", "q", "r", "S", "t", "u", "V", "W", "X", "y", "Z"]

>> ('a'..'z').to_a.shuffle # Shuffle it!

= ["@", "g", "T1", "k, "@mv, "gh, "gv, Tin - mmpo o 0g@n, U0 Dmpv o 0D, ngm o ol
"b", "r", "o", "f", "e", "w", "v", "m", "a", "x", "p"]

>> ('a'..'z').to_a.shuffle[0..7] # Pull out the first eight elements.

== [UE9, Tyo, TAT, Tav, URI, Gpw, Igl, Omw]

>> ('a'..'z').to_a.shuffle[0..7].join # Join them together to make one string.

=> "mznpybuj"

4.3.3 Hashes and Symbols

Hashes are essentially a generalization of arrays: you can think of hashes as basically like
arrays, but not limited to integer indices. (In fact, some languages, especially Perl, call
hashes associative arrays for this reason.) Instead, hash indices, or ey, can be almost any
object. For example, we can use strings as keys:

140 Chapter 4: Rails-Flavored Ruby

>> user = {} # {} is an empty hash

= {}

>> user["first_name"] = "Michael" # Key "first_name", value "Michael"
=> "Michael"

>> user["last_name"] = "Hartl" # Key "last_name", value "Hartl"
=> "Hartl"
>> user["first_name"] # Element access is like arrays

=> "Michael"
>> user # A literal representation of the hash
=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Hashes are indicated with curly braces containing key-value pairs; a pair of braces with
no key-value pairs—i.e., {}—is an empty hash. It’s important to note that the curly
braces for hashes have nothing to do with the curly braces for blocks. (Yes, this can
be confusing.) Though hashes resemble arrays, one important difference is that hashes
don’t generally guarantee keeping their elements in a particular order.'* If order matters,
use an array.

Instead of defining hashes one item at a time using square brackets, it’s easy to use
their literal representation:

>> user = { "first_name" => "Michael", "last_name" => "Hartl" }
=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Here I've used the usual Ruby convention of putting an extra space at the two ends of
the hash—a convention ignored by the console output. (Don’t ask me why the spaces
are conventional; probably some early influential Ruby programmer liked the look of
the extra spaces, and the convention stuck.)

So far we’ve used strings as hash keys, but in Rails it is much more common to use
symbols instead. Symbols look kind of like strings, but prefixed with a colon instead of
surrounded by quotes. For example, :name is a symbol. You can think of symbols as
basically strings without all the extra baggage:'?

12. Ruby 1.9 actually guarantees that hashes keep their elements in the same order entered, but it would be
unwise ever to count on a particular ordering.

13. As a result of having less baggage, symbols are easier to compare to each other; strings need to be compared
character by character, while symbols can be compared all in one go. This makes them ideal for use as hash
keys.

4.3 Other Data Structures 141

>> "name".split('")

= ["n", "a", "m", "e"]

>> :name.split('"')

NoMethodError: undefined method ‘split' for :name:Symbol
>> "foobar".reverse

=> "raboof"

>> :foobar.reverse

NoMethodError: undefined method ‘reverse' for :foobar:Symbol

Symbols are a special Ruby data type shared with very few other languages, so they may
seem weird at first, but Rails uses them a lot, so you’ll get used to them fast.
In terms of symbols as hash keys, we can define a user hash as follows:

>> user = { :name => "Michael Hartl", :email => "michael@example.com" }
=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> user|[:name] # Access the value corresponding to :name.
=> "Michael Hartl"

>> user|[:password] # Access the value of an undefined key.

=> nil

We see here from the last example that the hash value for an undefined key is simply

nil.

Hash values can be virtually anything, even other hashes, as seen in Listing 4.5.

Listing 4.5 Nested hashes.

>> params = {} # Define a hash called 'params' (short for 'parameters').
=> {}

>> params[:user] = { :name => "Michael Hartl", :email => "mhartl@example.com" }
=> {:name=>"Michael Hartl", :email=>"mhartl@example.com"}

>> params

=> {:user=>{:name=>"Michael Hartl", :email=>"mhartl@example.com"}}
>> params|[:user][:email]

=> "mhartl@example.com"

These sorts of hashes-of-hashes, or nested hashes, are heavily used by Rails, as we’ll see
starting in Section 8.2.

Aswith arrays and ranges, hashes respond to the each method. For example, consider
a hash named £1ash with keys for two conditions, : success and :error:

142 Chapter 4: Rails-Flavored Ruby

>> flash = { :success => "It worked!", :error => "It failed. :-(" }
=> {:success=>"It worked!", :error=>"It failed. :-("}

>> flash.each do |key, value|

?> puts "Key #{key.inspect} has value #{value.inspect}"

>> end

Key :success has value "It worked!"

Key :error has value "It failed. :-("

Note that, while the each method for arrays takes a block with only one variable, each
for hashes takes two, a keyand a value. Thus, the each method for a hash iterates through
the hash one key-value pairat a time.

The last example uses the useful inspect method, which returns a string with a

literal representation of the object it’s called on:

>> puts (1..5).to_a # Put an array as a sString.
1

2

3

4

5

>> puts (1..5).to_a.inspect # Put a literal array.
[1, 2, 3, 4, 5]

>> puts :name, :name.inspect

name

:name

>> puts "It worked!", "It worked!".inspect

It worked!

"It worked!"

By the way, using inspect to print an object is common enough that there’s a shortcut

for it, the p function:

>> p :name # Same as 'puts :name.inspect'

:name

4.3.4 CSS Revisited

It’s time now to revisit the lines from Listing 4.4 used in the layout to include the

cascading style sheets:

4.3 Other Data Structures 143

<%= stylesheet_link_ tag 'blueprint/screen', :media => 'screen' $%>
<%= stylesheet_link tag 'blueprint/print', :media => 'print' %>

We are now nearly in a position to understand this. As mentioned briefly in
Section 4.1.2, Rails defines a special function to include stylesheets, and

stylesheet_link_tag 'blueprint/screen', :media => 'screen'

is a call to this function. But there are two mysteries. First, where are the parentheses?
In Ruby, they are optional; these two lines are equivalent:

Parentheses on function calls are optional.
stylesheet_link_tag('blueprint/screen', :media => 'screen')
stylesheet_link_tag 'blueprint/screen', :media => 'screen'

Second, the :media argument sure looks like a hash, but where are the curly braces?
When hashes are the Jzstargument in a function call, the curly braces are optional; these
two lines are equivalent:

Curly braces on final hash arguments are optional.
stylesheet_link tag 'blueprint/screen', { :media => 'screen' }
stylesheet_link_tag 'blueprint/screen', :media => 'screen'

So, we see now that each of the lines

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' $%>
<%= stylesheet_link_ tag 'blueprint/print', :media => 'print' %>

calls the stylesheet_link tag function with two arguments: a string, indicating the
path to the stylesheet, and a hash, indicating the media type (* screen’ for the computer
screen and ‘print” for a printed version). Because of the <%= %> brackets, the results
are inserted into the template by ERb, and if you view the source of the page in your
browser you should see the HTML needed to include a stylesheet (Listing 4.6).'4

14. You may see some funky numbers, like 21257465942, after the CSS filenames. These are inserted by Rails
to ensure that browsers reload the CSS when it changes on the server.

144 Chapter 4: Rails-Flavored Ruby

Listing 4.6 The HTML source produced by the CSS includes.

<link href="/stylesheets/blueprint/screen.css" media="screen" rel="stylesheet"
type="text/css" />

<link href="/stylesheets/blueprint/print.css" media="print" rel="stylesheet"
type="text/css" />

4.4 Ruby Classes

We've said before that everything in Ruby is an object, and in this section we’ll finally
get to define some of our own. Ruby, like many object-oriented languages, uses classes
to organize methods; these classes are then instantiated to create objects. If you’re new
to object-oriented programming, this may sound like gibberish, so let’s look at some

concrete examples.

4.4.1 Constructors

We've seen lots of examples of using classes to instantiate objects, but we have yet to do
so explicitly. For example, we instantiated a string using the double quote characters,
which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes
=> "foobar"

>> s.class

=> String

We see here that strings respond to the method class, and simply return the class they
belong to.

Instead of using a literal constructor, we can use the equivalent named constructor,

which involves calling the new method on the class name: !’

>> s = String.new("foobar") # A named constructor for a string
=> "foobar"
>> s.class

15. These results will vary based on the version of Ruby you are using. This example assumes you are using
Ruby 1.9.2.

4.4 Ruby Classes 145

=> String
>> s == "foobar"

=> true

This is equivalent to the literal constructor, but it’s more explicit about what we’re doing.
Arrays work the same way as strings:

>> a = Array.new([1, 3, 2])
=> [1, 3, 2]

Hashes, in contrast, are different. While the array constructor Array . new takes an initial
value for the array, Hash.new takes a default value for the hash, which is the value of the
hash for a nonexistent key:

>> h = Hash.new

=> {}

>> h[:foo] # Try to access the value for the nonexistent key :foo.
=> nil
>> h = Hash.new(0) # Arrange for nonexistent keys to return 0 instead of nil.

=> {}
>> h[:foo]

4.4.2 Class Inheritance

When learning about classes, it’s useful to find out the class hierarchy using the super-
class method:

>> s = String.new("foobar")
=> "foobar"

>> s.class # Find the class of s.

=> String

>> s.class.superclass # Find the superclass of String.
=> Object

>> s.class.superclass.superclass # Ruby 1.9 uses a new BasicObject base class
=> BasicObject
>> s.class.superclass.superclass.superclass

=> nil

146 Chapter 4: Rails-Flavored Ruby

BasicObject

Object

Figure 4.2 The inheritance hierarchy for the String class.

A diagram of this inheritance hierarchy appears in Figure 4.2. We see here that the
superclass of String is object and the superclass of object is BasicObject, but
BasicObject has no superclass. This pattern is true of every Ruby object: trace back the
class hierarchy far enough and every class in Ruby ultimately inherits from Basicobject,
which has no superclass itself. This is the technical meaning of “everything in Ruby is
an object”.

To understand classes a little more deeply, there’s no substitute for making one of
our own. Let’s make a Word class with a palindrome? method that returns true if the
word is the same spelled forward and backward:

>> class Word

>> def palindrome? (string)

>> string == string.reverse
>> end

>> end

=> nil
We can use it as follows:

>> w = Word.new # Make a new Word object
=> #<Word:0x22d0b20>

>> w.palindrome? ("foobar")

=> false

>> w.palindrome? ("level™")

=> true

4.4 Ruby Classes 147

If this example strikes you as a bit contrived, good; this is by design. It’s odd to
create a new class just to create a method that takes a string as an argument. Since a
word is a string, it’s more natural to have our Word class inherit from string, as seen in
Listing 4.7. (You should exit the console and re-enter it to clear out the old definition
of word.)

Listing 4.7 Defining a Woxd class in the console.

>> class Word < String # Word inherits from String.
>> # Return true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse # self is the string itself.
>> end

>> end

=> nil

Here word < string is the Ruby syntax for inheritance (discussed briefly in
Section 3.1.2), which ensures that, in addition to the new palindrome? method, words
also have all the same methods as strings:

>> s = Word.new("level") # Make a new Word, initialized with "level".

=> "level"

>> s.palindrome? # Words have the palindrome? method.

=> true

>> s.length # Words also inherit all the normal string methods.
== 5

Since the word class inherits from string, we can use the console to see the class
hierarchy explicitly:

>> s.class

=> Word

>> s.class.superclass

=> String

>> s.class.superclass.superclass
=> Object

This hierarchy is illustrated in Figure 4.3.

148 Chapter 4: Rails-Flavored Ruby

BasicObject

Figure 4.3 The inheritance hierarchy for the (non-built-in) Woxd class from Listing 4.7.

In Listing 4.7, note that checking that the word is its own reverse involves accessing
the word inside the word class. Ruby allows us to do this using the sel£ keyword: inside
the Word class, self is the object itself, which means we can use

self == self.reverse

to check if the word is a palindrome.'®

4.4.3 Modifying Built-In Classes

While inheritance is a powerful idea, in the case of palindromes it might be even more
natural to add the palindrome? method to the String class itself, so that (among other
things) we can call palindrome? on a string literal, which we currently can’t do:

>> "level".palindrome?
NoMethodError: undefined method ‘palindrome?' for "level":String

16. For more on Ruby classes and the self keyword, see the RailsTips post on “Class and Instance Variables
in Ruby”.

4.4 Ruby Classes 149

Somewhat amazingly, Ruby lets you do just this; Ruby classes can be opened and
modified, allowing ordinary mortals such as ourselves to add methods to them:!”

>> class String

>> # Return true if the string is its own reverse.
>> def palindrome?

>> self == self.reverse

>> end

>> end

=> nil

>> "deified".palindrome?

=> true

(I don’t know which is cooler: that Ruby lets you add methods to built-in classes, or that
"deified" is a palindrome.)

Modifying built-in classes is a powerful technique, but with great power comes
great responsibility, and it’s considered bad form to add methods to built-in classes
without having a really good reason for doing so. Rails does have some good reasons; for
example, in web applications we often want to prevent variables from being blank—e.g.,
a user’s name should be something other than spaces and other whitespace—so Rails
adds a blank? method to Ruby. Since the Rails console automatically includes the Rails
extensions, we can see an example here (this won’t work in plain irb):

>> "" _ blank?

=> true

>> " ".empty?
=> false

>> " ".blank?
=> true

>> nil.blank?

=> true

We see that a string of spaces is not empty, but it is blank. Note also that nil is blank;
since nil isn’t a string, this is a hint that Rails actually adds blank? to string’s base
class, which (as we saw at the beginning of this section) is object itself. We'll see some
other examples of Rails additions to Ruby classes in Section 9.3.2.

17. For those familiar with JavaScript, this functionality is comparable to using a built-in class prototype object
to augment the class. (Thanks to reader Erik Eldridge for pointing this out.)

150

4.4.4 A Controller Class

Chapter 4: Rails-Flavored Ruby

All this talk about classes and inheritance may have triggered a flash of recognition,

because we have seen both before, in the Pages controller (Listing 3.24):

class PagesController < ApplicationController

def home
@title = "Home"
end

def contact

@title = "Contact"
end
def about

@title = "About"
end

end

You’re now in a position to appreciate, at least vaguely, what this code means:

PagesController is a class that inherits from ApplicationController, and comes

equipped with home, contact, and about methods, each of which defines the instance

variable @title. Since each Rails console session loads the local Rails environment, we

can even create a controller explicitly and examine its class hierarchy:'8

>> controller = PagesController
=> #<PagesController:0x22855d0>
>> controller.class

=> PagesController

>> controller.class.superclass

=> ApplicationController

>> controller.class.superclass.
=> ActionController: :Base

>> controller.class.superclass.
=> ActionController: :Metal

>> controller.class.superclass.
=> AbstractController: :Base

>> controller.class.superclass.
=> Object

.new

superclass

superclass

superclass

superclass

.superclass

.superclass.superclass

.superclass.superclass.superclass

A diagram of this hierarchy appears in Figure 4.4.

18. You don’t have to know what each class in this hierarchy does. 7don’t know what they all do, and I've been
programming in Ruby on Rails since 2005. This means either that (a) I'm grossly incompetent or (b) you can
be a skilled Rails developer without knowing all its innards. I hope for both our sakes that it’s the latter.

4.4 Ruby Classes 151

BasicObject

Object

AbstractController::Base

ActionController::Metal

ActionController::Base

ApplicationController

PagesController

Figure 4.4 The inheritance hierarchy for the Pages controller.

We can even call the controller actions inside the console, which are just methods:

>> controller.home

=> "Home"

This return value of "Home™ comes from the assighment@title = "Home" in the home
action.

But wait—actions don’t have return values, at least not ones that matter. The point
of the home action, as we saw in Chapter 3, is to render a web page. And I sure don’t
remember ever calling PagesController.new anywhere. What’s going on?

152 Chapter 4: Rails-Flavored Ruby

What's going on is that Rails is written in Ruby, but Rails isn’t Ruby. Some Rails
classes are used like ordinary Ruby objects, but some are just grist for Rails’ magic mill.
Rails is sui generis, and should be studied and understood separately from Ruby. This is
why, if your principal programming interest is writing web applications, I recommend
learning Rails first, then learning Ruby, then looping back to Rails.

4.4.5 A User Class

We end our tour of Ruby with a complete class of our own, a User class that anticipates
the User model coming up in Chapter 6.

So far we've entered class definitions at the console, but this quickly becomes tire-
some; instead, create the file example_user.rb in your Rails root directory and fill it
with the contents of Listing 4.8. (Recall from Section 1.1.3 that the Rails root is the
root of your application directory; for example, the Rails root for my sample application

is /Users/mhartl/rails_proj ects/sample_app.)

Listing 4.8 Code for an example user.
example_user.rb

class User
attr_accessor :name, :email

def initialize(attributes = {})
@name = attributes|:name]
@email = attributes[:email]
end

def formatted_email
"#{@name} <#{@email}>"
end
end

There’s quite a bit going on here, so let’s take it step by step. The first line,

attr accessor :name, :email

creates attribute accessors corresponding to a user’s name and email address. This creates
“getter” and “setter” methods that allow us to retrieve (get) and assign (set) @name and
@email instance variables.

4.4 Ruby Classes 153

The first method, initialize, is special in Ruby: it’s the method called when we
execute User .new. This particular initialize takes one argument, attributes:

def initialize(attributes = {})
@name = attributes|:name]
@email = attributes[:emaill]
end

Here the attributes variable has a default value equal to the empty hash, so that we can
define a user with no name or email address (recall from Section 4.3.3 that hashes return
nil for nonexistent keys, so attributes[:name] will be nil if there is no :name key,
and similarly for attributes[:emaill).

Finally, our class defines a method called formatted_email that uses the values of
the assigned @name and @email variables to build up a nicely formatted version of the
user’s email address using string interpolation (Section 4.2.2):

def formatted_email
"#{@name} <#{C@email}>"
end

Let’s fire up the console, require the example user code, and take our User class
out for a spin:

>> require './example_user' # This is how you load the example_ user code.
=> ["User"]

>> example = User.new

=> #<User:0x224ceec @email=nil, @name=nil>

>> example.name # nil since attributes/:name] is nil
=> nil
>> example.name = "Example User" # Assign a non-nil name

=> "Example User"

>> example.email = "user@example.com" # and a non-nil email address
=> "user@example.com"

>> example.formatted_email

=> "Example User <user@example.com>"

Here the 7.7 is Unix for “current directory”, and . /example_user.rb’ tells Ruby
to look for an example user file relative to that location. The subsequent code creates an

154 Chapter 4: Rails-Flavored Ruby

empty example user and then fills in the name and email address by assigning directly
to the corresponding attributes (assignments made possible by the attr_accessor line
in Listing 4.8). When we write

example.name = "Example User"

Ruby is setting the @name variable to "Example User" (and similarly for the email
attribute), which we then use in the formatted_email method.

Recalling from Section 4.3.4 we can omit the curly braces for final hash arguments,
we can create another user by passing a hash to the initialize method to create a user
with pre-defined attributes:

>> user = User.new(:name => "Michael Hartl", :email => "mhartl@example.com")
=> #<User:0x225167c @email="mhartl@example.com", @name="Michael Hartl">

>> user.formatted_email

=> "Michael Hartl <mhartl@example.com>"

We will see starting in Chapter 8 that initializing objects using a hash argument is
common in Rails applications.

4.5 Exercises

1. Using Listing 4.9 as a guide, combine the split, shuffle, and join methods to
write a function that shuffles the letters in a given string.

2. Using Listing 4.10 as a guide, add a shuffle method to the string class.

3. Create three hashes called personi, person2, and person3, with first and
last names under the keys :first and :last. Then create a params hash
so that params[:father] is personl, params[:mother] is person2, and
params|[:child] is person3. Verify that, for example, params[:father]
[:£first] has the right value.

4. Find an online version of the Ruby API and read about the Hash method merge.

4.5 Exercises

Listing 4.9 Skeleton for a string shuffle function.

155

>>
>>
>>

>>

def string shuffle(s)
s.split('').?.?

end

nil

string_shuffle("foobar")

Listing 4.10 Skeleton for a shuf£1e method attached to the String class.

>>
>>
>>
>>
>>

>>

class String
def shuffle
self.split('').?.?
end
end
nil
"foobar".shuffle

This page intentionally left blank

CHAPTER 5

Filling in the Layout

In the process of taking a brief tour of Ruby in Chapter 4, we added some basic cascading
style sheets to our site layout (Section 4.1.2). In this chapter, we’ll add some custom
styles of our own, as we fill in the layout with links to the pages (such as Home and
About) that we’ve created so far. Along the way, we'll learn about partials, Rails routes,
and integration tests. We'll end by taking a first important step toward letting users sign
up to our site.

5.1 Adding Some Structure

Rails Tutorialis a book on web development, not web design, but it would be depressing
to work on an application that looks like complete crap, so in this section we’ll add some
structure to the layout and give it some minimal styling with CSS. We'll also give our
code some styling, so to speak, using partials to tidy up the layout once it gets a little
cluttered.

When building web applications, it is often useful to get a high-level overview of
the user interface as early as possible. Throughout the rest of this book, I will thus often
include mockups (in a web context often called wireframes), which are rough sketches
of what the eventual application will look like.! In this chapter, we will principally be
developing the static pages introduced in Section 3.1, including a site logo, a navigation
header, and a site footer. A mockup for the most important of these pages, the Home
page, appears in Figure 5.1. (You can see the final result in Figure 5.8. You’ll note that

1. The mockups in Ruby on Rails Tutorial are made with an excellent online mockup application called Mock-
ingbird.

157

158 Chapter 5: Filling in the Layout

Home Help Signin

Sample App

This is the home page for the sample app.

Sign up now!

About Contact News

Figure 5.1 A mockup of the sample application’s Home page.

it differs in some details—for example, the footer has four links instead of three—Dbut
that’s fine, since a mockup need not be exact.)

As usual, if you’re using Git for version control, now would be a good time to make
a new branch:

$ git checkout -b filling-in-layout

You mightstill have the example_user.rb file from Chapter 4 in your project directory;
if so, you should probably just remove it.

5.1 Adding Some Structure 159

5.1.1 Site Navigation

When we last saw the site layout file application.html.erb in Listing 4.3, we had
just added Blueprint stylesheets using the Rails stylesheet_1link_tag helper. It’s time
to add a couple more stylesheets, one specifically for Internet Explorer browsers and
one for our (soon-to-be-added) custom CSS. We'll also add some additional divisions
(aivs), some ids and classes, and the start of our site navigation. The full file is in
Listing 5.1; explanations for the various pieces follow immediately thereafter. If you'd
rather not delay gratification, you can see the results in Figure 5.2. (/Voze: it’s not (yet)

very gratifying.)

Listing 5.1 The site layout with added structure.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>

<title><%= title &></title>
<%= csrf_meta_tag %>
<!--[if 1t IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' $%>
<%= stylesheet_link_ tag 'blueprint/print', :media => 'print' %>
<!--[if 1t IE 8]><%= stylesheet_link_tag 'blueprint/ie' $><![endif]-->
<%= stylesheet_link_tag 'custom', :media => 'screen' $>
</head>
<body>
<div class="container">
<header>
<%= image_tag("logo.png", :alt => "Sample App", :class => "round") %>

<nav class="round">

<1li><%= link_to "Home", '#' %>
<1li><%= link_to "Help", '#' $%></1li>
<1li><%= link_to "Sign in", '#' %></1li>

</nav>
</header>
<section class="round">
<%= yield %>
</section>
</div>
</body>
</html>

160 Chapter 5: Filling in the Layout

Ruby on Rails Tutorial Sample App | Home ri‘
—l'.

hitp | flocalhast 3000/ pages /home

Sample App

This & the Nome page for the Rutry on Fals TULOAN] SAMOE ADGIEALN.

S0 ool

Figure 5.2 The Home page (/pages/home) with no logo image or custom CSS.

Let’s look at the new elements from top to bottom. As noted briefly in Section 3.1,
Rails 3 uses HTMLS5 by default (as indicated by the doctype <!DOCTYPE html>); since
the HTMLS5 standard is new, some browsers (especially Internet Explorer) don’t yet
tully support it, so we include some JavaScript code (known as an “HTMLS5 shiv”) to
work around the issue:

<!--[if 1t IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

The somewhat odd syntax

<!--[if 1t IE 9]>

5.1 Adding Some Structure 161

includes the enclosed line only if the version of Microsoft Internet Explorer (IE) is less
than 9 (if 1t IE 9). The weird [if 1t IE 9] syntax is 7ot part of Rails; it’s actually
a conditional comment supported by Internet Explorer browsers for just this sort of
thing. It’s a good thing, too, because it means we can include the extra stylesheet only
for IE browsers less than version 9, leaving other browsers such as Firefox, Chrome, and
Safari unaffected.

After the lines to include the Blueprint stylesheets (first introduced in Listing 4.4),
there is another Internet Explorer—specific line, which this time is a stylesheet that only
gets included if the browser is a version of Internet Explorer less than 8 (£ 1t IE 8):

<!--[if 1t IE 8]><%= stylesheet_link tag 'blueprint/ie' %><![endif]-->

IE has a large number of idiosyncrasies (especially before version 8), and Blueprint comes
with a special ie.css file that fixes a bunch of them.

After the IE stylesheet comes a stylesheet link for a file that doesn’t exist yet, cus-
tom.css, where we’ll put our custom CSS:

<%= stylesheet_link_tag 'custom', :media => 'screen' $%>

CSS is very forgiving, and even though the file doesn’t exist, our page will still work just
fine. (We’'ll create custom.css in Section 5.1.2.)

The next section places a container divaround our site navigation and content, which
is a div tag with class container. This container div is needed by Blueprint (see the
Blueprint tutorial for more information). Then there are header and section elements;
the header contains the sample app logo (to be added below) and the site navigation
(nav). Finally, there is section element containing the site’s main content:

<div class="container">

<header>
<%= image_tag("logo.png", :alt => "Sample App", :class => "round") %>
<nav class="round">

<1li><%= link to "Home", '#' $%></1li>
<1li><%= link_to "Help", '#' %></1li>
<%= link_to "Sign in", '#' $%></1li>

</nav>

162 Chapter 5: Filling in the Layout

</header>
<section class="round">
<%= yield %>
</section>
</div>

The div tag in HTML is a generic division; it doesn’t do anything apart from divide
the document into distinct parts. In older style HTML, div tags are used for nearly
all site divisions, but HTML5 adds the header, nav, and section elements for divi-
sions common to many applications. All HTML elements, including divs and the new
HTMLS5 elements, can be assigned classes and ids; these are merely labels, and are useful
for styling with CSS (Section 5.1.2). The main difference between classes and ids is that
classes can be used multiple times on a page, but ids can only be used once.

Inside the header is a Rails helper called image_tag:

<%= image_tag("logo.png", :alt => "Sample App", :class => "round") %>

Note that, as with stylesheet_link_tag (Section 4.3.4), we pass a hash of options,
in this case setting the alt and class attributes of the image tag using symbols :alt
and :class. To make this clearer, let’s look at the HTML this tag produces:3

The alt attribute is what will be displayed if there is no image,* and the class will be
used for styling in Section 5.1.2. (Rails helpers often take options hashes in this way,
giving us the flexibility to add arbitrary HTML options without ever leaving Rails.) You
can see the result in Figure 5.2; we’ll add the logo image at the end of this section.

2. These are completely unrelated to Ruby classes.

3. You might notice that the img tag, rather than looking like . . . , instead lookslike .
Tags that follow this form are known as se/f-closing tags.

4. The alt text is also what will be displayed by screen readers for the visually impaired. Though people are
sometimes sloppy about including the a1t attribute for images, it is in fact required by the HTML standard.
Luckily, Rails includes a default a1t attribute; if you don’t specify the attribute in the call to image_tag, Rails
just uses the image filename (minus extension). In this case, though, sample app is more descriptive than 1ogo,
so I've elected to set the alt text explicitly.

5.1 Adding Some Structure 163

The second element inside the layout header is a list of navigation links, made using
the unordered list tag ul, together with the /st item tag 1i.:

<nav class="round">

<1li><%= link_to "Home", '#' $%></1li>
<1li><%= link to "Help", '#' $></1i>
<1li><%= link to "Sign in", '#' $%></1li>

</nav>

This list uses the Rails helper 1ink_to to create links (which we created directly with
the anchor tag a in Section 3.3.2); the first argument is the link text, while the second
is the URL. We'll fill in the URLs with named routes in Section 5.2.3, but for now we
use the stub URL 7#’ commonly used in web design. Once Rails has processed this
layout and evaluated the Embedded Ruby, the list looks like this:

<nav class="round">

Home</1li>
Help</1li>
Sign in</1li>

</nav>

Our layout is now complete, and we can look at the results by visiting, e.g., the
Home page. In anticipation of adding users to our site in Chapter 8, let’s add a signup
link to the home .html.erb view (Listing 5.2).

Listing 5.2 The Home page with a link to the signup page.
app/views/pages/home.html.erb

<hl>Sample App</hl>

<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.

</p>

<%= link_to "Sign up now!", '#', :class => "signup_button round" %>

164 Chapter 5: Filling in the Layout
As with the previous uses of 1ink_to, this just creates a stub link of the form

Sign up now!

Note again the recurring theme of options hashes, in this case used to add a couple CSS
classes to the anchor tag. You might notice that the a tag here has #wo classes, separated
by a space:

This is convenient for the common case of an element with two different kinds of styles.
Now we're finally ready to see the fruits of our labors (Figure 5.2).> Pretty under-
whelming, you say? Perhaps so. Happily, though, we’ve done a good job of giving our
HTML elements sensible classes and ids, which puts us in a great position to add style
to the site with CSS.
Before we move on to CSS styling, let’s replace the logo alt text with a logo image;
you can download the sample application logo at

http://railstutorial.org/images/sample_app/logo.png

Put thelogo in public/images so that Rails can find it. The resultappears in Figure 5.3.

5.1.2 Custom CSS

In Section 5.1.1, you may have noticed that the CSS elements are semantic, that is,
they have meaning in English beyond the structure of the page. For example, instead of
writing that the navigation menu was “right-top” we used the element “nav”. This gives
us considerable flexibility in constructing a layout based on CSS.

Let’s get started by filling in the custom. css file with Listing 5.3. (There are quite
a few rules in Listing 5.3. To get a sense of what a CSS rule does, it’s often helpful to
comment it out using CSS comments, i.e., by putting it inside /* ... */, and seeing
what changes.)

5. Note that Safari and Chrome users will see an indicator of a broken image in place of the “Sample App” alt
text.

http://railstutorial.org/images/sample_app/logo.png

5.1 Adding Some Structure

H ails Tutonal

Sample App

* Home
* Heip
* 000

Sample App

This i the home page for the Buby on Rals Tutonal sampie applcation

Sign up now!

Figure 5.3 The Home page (/pages/home) with a logo image but no custom CSS.

Listing 5.3 CSS for the container, body, and links.
public/stylesheets/custom.css

.container {
width: 710px;

body {
background: #cff;

header {
padding-top: 20px;

header img {
padding: lem;
background: #fff;

166 Chapter 5: Filling in the Layout

section ({
margin-top: lem;
font-size: 120%;
padding: 20px;
background: #fff;

section hl {
font-size: 200%;

/* Links */

a {
color: #09c;
text-decoration: none;

a:hover {
color: #069;
text-decoration: underline;

a:visited {
color: #069;

You can see the results of this CSS in Figure 5.4. There’s a lot of CSS here, but it
has a consistent form. Each rule refers either to a class, an id, an HTML tag, or some

combination thereof, followed by a list of styling commands. For example,

body {
background: #cff;

changes the background color of the body tag to baby blue, while

header img {
padding: lem;
background: #fff;

5.1 Adding Some Structure 167

ann Ruby on Rails Tutenal Sample App | Home r

Ruby on Rails Tut

Sample A;ﬁp

.
.

Sample App

This is the home page for the sample application.

Figure 5.4 The Home page (/pages/home) with custom colors.

puts a padding layer of one em (roughly the width of the letter M) around the image (img)
inside a header tag. This rule also makes the background color #£££, which is white.®
Similarly,

.container {
width: 710px;
}

6. HTML colors can be coded with three base-16 (hexadecimal) numbers, one each for the primary colors red,
green, and blue. #£££ maxes out all three colors, yielding pure white. See w3schools.com/html/html_colors.asp
for more information.

168 Chapter 5: Filling in the Layout

ann Ruby on Rails Tuterial Sample App | Home (e

ST 3 b necuhost 000ipapnsthome —
SH.IT]1.)|E-) App
Sample App
This is the home page for the sample application.

- = i

Figure 5.5 The Home page (/pages/home) with navigation styling.

styles an element with class container, in this case giving it a width of 710 pixels
(corresponding to 18 Blueprint columns).” The dot . in .container indicates that
the rule styles a class called “container”. (As we’ll see in Section 8.2.3, the pound sign #
identifies a rule to style a CSS 7d in the same way that a dot indicates a CSS class.)

Changing colors is nice, but the navigation links are still hanging down on the left
side of the page. Let's move them to a better location and give them a nicer appearance
with the navigation rules in Listing 5.4. The results appear in Figure 5.5. (In some of the
book’s code samples, including Listing 5.4, I use three vertical dots to indicate omitted
code. When typing in the code, take care not to include the dots; alternatively, if you
copy-and-paste the code, make sure to remove the dots by hand.)

7. Blueprint CSS uses a grid of columns 40 pixels across, 30 pixels for the column itself and 10 pixels of padding.
The rightmost column doesn’t need padding, so 18 columns is 710 pixels: 18 * 40 — 10 = 710.

5.1 Adding Some Structure 169

Listing 5.4 Navigation CSS.
public/stylesheets/custom.css

/* Navigation */

nav {
float: right;

nav {
background-color: white;
padding: 0 0.7em;
white-space: nowrap;

nav ul {
margin: O;
padding: O;

nav ul 1i {
list-style-type: none;
display: inline-block;
padding: 0.2em O;

nav ul 1i a {
padding: 0 5px;
font-weight: bold;

nav ul 1i a:visited {
color: #09c;

nav ul 1li a:hover {
text-decoration: underline;

Here nav ul styles a ul tag inside a nav tag, nav ul 1i styles an 1i tag inside a ul
tag inside a nav tag, and so on.

As the penultimate step, we’ll make the link to our site’s signup page a little more
obvious. (Though for the sample app we don’t care, on any real site it’s naturally quite

170 Chapter 5: Filling in the Layout

important to make the signup link very prominent.) Listing 5.5 shows CSS to make the
signup link big, green, and clickable (so a click anywhere inside the box will follow the
link).

Listing 5.5 CSS to make the signup button big, green, and clickable (/pages/home).
public/stylesheets/custom.css

/* Sign up button */

a.signup_button
margin-left: auto;
margin-right: auto;
display: block;
text-align: center;
width: 190px;
color: #fff;
background: #006400;
font-size: 150%;
font-weight: bold;
padding: 20px;

There are a bunch of rules here; as usual, comment a line out and reload the page if
you want to see what each one does. The end result is a signup link that’s hard to miss
(Figure 5.0).

As a final touch, we’ll make use of the round class we’ve placed on many of our site
elements. Although the current sharp-cornered boxes aren’t terrible, it’s a little friendlier
to soften the corners so they won’t slice up our users. We can accomplish this using the
CSS code in Listing 5.6, with the results shown in Figure 5.7.

Listing 5.6 Stylesheet rules for round corners.
public/stylesheets/custom.css

/* Round corners */

.round {
-moz-border-radius: 10px;

5.1 Adding Some Structure 171

-webkit-border-radius: 10px;
border-radius: 10px;

I¢’s worth noting that this trick works on Firefox, Safari, Opera, and many other browsers,
but it doesn’t work on Internet Explorer. There are ways of getting round corners that
work on all browsers, but there’s no other technique that’s even close to this easy, so we’ll
just risk leaving our IE users with a few tiny cuts.

5.1.3 Partials

Though the layout in Listing 5.1 serves its purpose, it’s getting a little cluttered: there
are several lines of CSS includes and even more lines of header for what are logically
only two ideas. We can tuck these sections away using a convenient Rails facility called
partials. Lets first take a look at what the layout looks like after the partials are defined
(Listing 5.7).

Ruby on Rals Tutonal Sample App | Home —

hetg | flacalhast 3000/ pages/home T .

S:ilﬂpiC App

Sample App

This is the home page for the sample apphcation

Figure 5.6 The Home page (/pages/home) with a signup button.

172 Chapter 5: Filling in the Layout

hitn | flocalhast 3000/ pages home W

Rutiy on Rails Tutenal Sample App | Home ﬁﬂ

Sal.‘npli.e.Ap.p

Sample App

This is the home page for the sample application

Sign up now!

B
Figure 5.7 The Home page (/pages/home) with round corners.

Listing 5.7 The site layout with partials for the stylesheets and header.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title><%= title $%></title>
<%= csrf_meta_tag %>
<%= render 'layouts/stylesheets' $%>
</head>
<body>
<div class="container">
<%= render 'layouts/header' $>
<section class="round">
<%= yield %>
</section>
</div>
</body>
</html>

5.1 Adding Some Structure 173

In Listing 5.7, we've replaced the stylesheet lines with a single call to a Rails helper

called render:

<%= render 'layouts/stylesheets' $%>

The effect of this line is to look for a file called app/views/layouts/_stylesheets.
html.erb, evaluate its contents, and insert the results into the view.® (Recall that

oe

<%= ... %> is the Embedded Ruby syntax needed to evaluate a Ruby expression and
then insert the results into the template.) Note the leading underscore on the filename
_stylesheets.html.erb; this underscore is the universal convention for naming par-
tials, and among other things makes it possible to identify all the partials in a directory
at a glance.

Of course, to get the partial to work, we have to fill it with some content; in the case
of the stylesheet partial, this is just the four lines of stylesheet includes from Listing 5.1;
the result appears in Listing 5.8. (Technically, the HTMLS5 shiv includes JavaScript, not
CSS. On the other hand, its purpose is to allow Internet Explorer to understand CSS
with HTMLS5, so logically it still belongs in the stylesheet partial.)

Listing 5.8 A partial for stylesheet includes.
app/views/layouts/_stylesheets.html.erb

<!--[if 1t IE 9]>

<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' $%>

<%= stylesheet_link_ tag 'blueprint/print', :media => 'print' %>

<!--[if 1t IE 8]><%= stylesheet_link tag 'blueprint/ie' $><![endif]-->
<%= stylesheet_link_tag 'custom', :media => 'screen' $%>

Similarly, we can move the header material into the partial shown in Listing 5.9 and
insert it into the layout with another call to render:

8. Many Rails developers use a shared directory for partials shared across different views. I prefer to use the
shared folder for utility partials that are useful on multiple views, while putting partials that are literally on
every page (as part of the site layout) in the 1ayouts directory. (We'll create the shared directory starting in
Chapter 8.) That seems to me a logical division, but putting them all in the shared folder certainly works fine,
t0o0.

174 Chapter 5: Filling in the Layout

<%= render 'layouts/header' %>

Listing 5.9 A partial for the site header.
app/views/layouts/_header.html.erb

<header>
<%= image_tag("logo.png", :alt => "Sample App", :class => "round") %>
<nav class="round">

<1li><%= link_to "Home", '#' $%></1li>
<%= link_to "Help", '#' %></1li>
<%= link_to "Sign in", '#' $%></1li>

</nav>
</header>

Now that we know how to make partials, let’s add a site footer to go along with the
header. By now you can probably guess that we’ll call it _footer.html.erb and put it
in the layouts directory (Listing 5.10).

Listing 5.10 A partial for the site footer.
app/views/layouts/_footer.html.erb

<footer>

<nav class="round">

<1li><%= link_to "About", '#' %>
<%= link_to "Contact", '#' %></1li>

News</1li>
Rails Tutorial</1li>

</nav>
</footer>

As with the header, in the footer we've used 1ink_to for the internal links to the About
and Contact pages and stubbed out the URLs with ## for now. (As with header, the
footer tag is new in HTMLS5.)

We can render the footer partial in the layout by following the same pattern as the
stylesheets and header partials (Listing 5.11).

5.1 Adding Some Structure 175

Listing 5.11 The site layout with a footer partial.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title><%= title &></title>
<%= csrf_meta_tag %>
<%= render 'layouts/stylesheets' $%>
</head>
<body>
<div class="container">
<%= render 'layouts/header' $%>
<section class="round">
<%= yield %>
</section>
<%= render 'layouts/footer' $>
</div>
</body>
</html>

Of course, the footer will be ugly without some styling (Listing 5.12). The results
appear in Figure 5.8.

Listing 5.12 Adding the CSS for the site footer.
public/stylesheets/custom.css

footer {
text-align: center;
margin-top: 10px;
width: 710px;
margin-left: auto;
margin-right: auto;

footer nav {
float: none;

Note here the rule

176 Chapter 5: Filling in the Layout

anon Ruby on Rails Tutorial Sample App | Home [
m"' © O hitp | flocalhost 3000/ pages fhome i 'ﬂ

Sample App

Sample App

This is the home page for the sample application,

Figure 5.8 The Home page (/pages/home) with an added footer.

footer nav {
float: none;

that overrides the previous rule

nav {
float: right;

so that the footer is centered in the bottom of the page rather than pushed off to the
right like the navigation in the header. This convention of having a succession of rules,

5.2 Layout Links 177

with subsequent rules possibly overriding previous ones, is what puts the cascading in
cascading style sheets.

5.2 Layout Links

Now that we’ve finished a site layout with decent styling, it’s time to start filling in the
links we’ve stubbed out with 7#7. Of course, we could hard-code links like

About

but that isn’t the Rails Way. For one, it would be nice if the URL for the about page
were /about rather than /pages/about; moreover, Rails conventionally uses named
routes, which involves code like

<%= link_to "About", about_path %>

This way the code has a more transparent meaning, and it’s also more flexible since
we can change the definition of about_path and have the URL change everywhere
about_path is used.

The full list of our planned links appears in Table 5.1, along with their mapping to
URLs and routes. We'll implement all but the last one by the end of this chapter. (We'll
make the last one in Chapter 9.)

Table 5.1 Route and URL mapping for site links

Page URL Named route
Home / root_path
About /about about_path
Contact /contact contact_path
Help /help help path
Sign up /signup signup_path

Sign in /signin signin path

178 Chapter 5: Filling in the Layout

5.2.1 Integration Tests

Before writing the routes for our application, we’ll continue with our test-driven de-
velopment by writing some tests for them. There are several ways to test routes, and
we're going to take this opportunity to introduce integration tests, which give us a way
to simulate a browser accessing our application and thereby test it from end to end. As
we'll see starting in Section 8.4, testing routes is just the beginning.

We start by generating an integration test for the sample application’s layout

links:

$ rails generate integration_test layout_links
invoke rspec
create spec/requests/layout_links_spec.rb

Note that the generator automatically appends _spec.rb to the name of our test file,
yielding spec/requests/layout_links_spec.rb. (In RSpec, integration tests are
also called request specs; the origins of this terminology are obscure to me.)

Our integration test will use the same get function we used in Section 3.2 in the
Pages controller spec, with code like this:

describe "GET 'home'" do
it "should be successful" do
get 'home'
response.should be_success
end
end

In this section, we want to test URLs like / and /about, but you can’t get these
URLs inside a controller test—controller tests only know about URLs defined for that
exact controller. In contrast, integration tests are bound by no such restriction, since
they are designed as integrated tests for the whole application and hence can get any
page they want.

Following the model of the Pages controller spec, we can write an integration spec
for each of the pages in Table 5.1 that we've already created, namely, Home, About,
Contact, and Help. To make sure the right page (i.e., view) is rendered in each case,
we'll check for the correct title using have_selector. The test definitions appear in
Listing 5.13.

5.2 Layout Links 179

Listing 5.13 Integration test for routes.
spec/requests/layout_links spec.rb

require 'spec_helper'

describe "LayoutLinks" do

it "should have a Home page at '/'" do

get '/
response.should have_selector('title', :content => "Home")
end

it "should have a Contact page at '/contact'" do

get '/contact'

response.should have_selector('title', :content => "Contact")
end

it "should have an About page at '/about'" do

get '/about'

response.should have_selector('title', :content => "About")
end

it "should have a Help page at '/help'" do

get '/help'
response.should have_selector('title', :content => "Help")
end

end

Of course, at this point they should fail (Red); we’ll get them to Green in Section 5.2.2.

By the way, if you don’t have a Help page at this point, now would be a good
time to add one. (If you solved the Chapter 3 exercises in Section 3.5, you already have
one.) First, add the help action to the Pages controller (Listing 5.14). Then, create the
corresponding view (Listing 5.15).

Listing 5.14 Adding the help action to the Pages controller.
app/controllers/pages_controller.rb

class PagesController < ApplicationController

def help
@title = "Help"
end
end

180 Chapter 5: Filling in the Layout

Listing 5.15 Adding a view for the Help page.
app/views/pages/help.html.erb

<hl>Help</hl>
<p>
Get help on Ruby on Rails Tutorial at the
Rails Tutorial help page.
To get help on this sample app, see the
Rails Tutorial book.
</p>

There’s one final detail to deal with before moving on: if you’re running Autotest, you
might notice that it doesn’t run the integration test. This is by design, since integration
tests can be slow and hence can disrupt the red-green-refactor cycle, but I still find it
preferable to have Autotest run the integration tests. To arrange for this to happen, you
just have to tell Autotest to run tests in the spec/requests directory (Listing 5.16 or
Listing 5.17).

Listing 5.16 Additions to .autotest needed to run integration tests with Autotest on OS X.

Autotest.add_hook :initialize do |autotest|
autotest.add_mapping (/ “spec\/requests\/.*_spec\.rb$/) do
autotest.files_matching (/" spec\/requests\/.*_spec\.rb$/)
end
end

Listing 5.17 Additions to .autotest needed to run integration tests with Autotest on Ubuntu Linux.

Autotest.add_hook :initialize do |autotest|
autotest.add_mapping (%r% spec/ (requests)/.*rb$%) do|filename, _
filename
end
end

Don’t worry about where this code comes from; I don’t know the Autotest API either.
At some point I Googled around with search terms like “rspec autotest integration” and
found it, and when I dropped it into my .autotest file, it worked.

5.2 Layout Links 181

5.2.2 Rails Routes

Now that we have tests for the URLs we want, it’s time to get them to work. As noted
in Section 3.1.2, the file Rails uses for URL mappings is config/routes.rb. If you
take a look at the default routes file, you'll see that it’s quite a mess, but it’s a useful
mess—full of commented-out example route mappings. I suggest reading through it at
some point, and also taking a look at the Rails Guides article “Rails Routing from the
outside in” for a much more in-depth treatment of routes. For now, though, we’ll stick
with the examples in Listing 5.18.°

Listing 5.18 Routes for static pages.
config/routes.rb

SampleApp: :Application.routes.draw do

match '/contact', :to => 'pages#contact'

match '/about', :to => 'pages#about'

match '/help', :to => 'pages#help'
end

If you read this code carefully, you can probably figure out what it does; for example,
you can see that

match '/about', :to => 'pages#about'

matches ’ /about # and routes it to the about action in the Pages controller. Before, this
was more explicit: we used get 'pages/about' to get to the same place, but /about
is more succinct. What isn’t obvious is that match ‘/about ’ also automatically creates

named routes for use in the controllers and views:

about_path => '/about'
about_url => 'http://localhost:3000/about'

9. In the line SampleApp: :Application.routes.draw do you might recognize that the draw method takes
a block, a construction we last saw in Section 4.3.2.

182 Chapter 5: Filling in the Layout

Note that about_url is the fu// URL http: //localhost:3000/about (with local-
host :3000 being replaced with the domain name, such as example.com, for a fully
deployed site). As discussed in Section 5.2, to get just /about, you use about_path.
(Rails Tutorial uses the path form for consistency, but the difference rarely matters in
practice.)

With these routes now defined, the tests for the About, Contact, and Help pages
should pass. (As usual, use Autotest or rspec spec/ to check.) This leaves the test for
the Home page.

To establish the route mapping for the Home page, we could use code like this:

match '/', :to => 'pagesi#home'
This is unnecessary, though; Rails has special instructions for the root URL / (“slash”)
located lower down in the file (Listing 5.19).

Listing 5.19 The commented-out hint for defining the root route.
config/routes.rb

SampleApp: :Application.routes.draw do

You can have the root of your site routed with "root"
just remember to delete public/index.html.
root :to => "welcome#index"

end

Using Listing 5.19 as a model, we arrive at Listing 5.20 to route the root URL / to the
Home page.

Listing 5.20 Adding a mapping for the root route.
config/routes.rb

SampleApp: :Application.routes.draw do
match '/contact', :to => 'pagesi#contact'
match '/about', :to => 'pages#about'
match '/help', :to => 'pagesi#help'

5.2 Layout Links 183

root :to => 'pages#home'

end

This code maps the root URL / to /pages/home, and also gives URL helpers as follows:

root_path => '/'
root_url => 'http://localhost:3000/"

We should also heed the comment in Listing 5.19 and delete public/index.html to
prevent Rails from rendering the default page (Figure 1.3) when we visit /. You can of
course simply remove the file by trashing it, but if you’re using Git for version control
there’s a way to tell Git about the removal at the same time using git rm:

$ git rm public/index.html
$ git commit -am "Removed default Rails page"

With that, all of the routes for static pages are working, and the tests should pass. Now
we just have to fill in the links in the layout.

5.2.3 Named Routes

Let’s put the named routes created in Section 5.2.2 to work in our layout. This will
entail filling in the second arguments of the 1ink_to functions with the proper named

routes. For example, we’ll convert

<%= link to "About", '#' %>

to

<%= link_to "About", about_path %>

and so on.

184 Chapter 5: Filling in the Layout

We'll start in the header partial, _header.html.erb (Listing 5.21), which has links
to the Home and Help pages. While we’re at it, we'll follow a common web convention
and link the logo image to the Home page as well.

Listing 5.21 Header partial with links.
app/views/layouts/_header.html.erb

<header>
<% logo = image_tag("logo.png", :alt => "Sample App", :class => "round") %>
<%= link_to logo, root_path %>
<nav class="round">

<1li><%= link_to "Home", root_path $%></1li>
<1li><%= link_ to "Help", help_path %></1li>
<%= link_to "Sign in", '#' $%>

</nav>
</header>

We won’t have a named route for the “Sign in” link until Chapter 9, so we've left it as
4 for now. Note that this code defines the local variable 1ogo for the logo image tag,
and then links to it in the next line:

<% logo = image_tag("logo.png", :alt => "Sample App", :class => "round") %>
<%= link_to logo, root_path %>

This is a little cleaner than stuffing it all into one line. It’s especially important to notice
that the ERD for the variable assignment doesn’t have an equals sign; it’s just <% ... %>,
because we don’t want that line inserted into the template. (Using a local variable in this
manner is only one way to do it. An even cleaner way might be to define a 1ogo helper;
see Section 5.5.)

The other place with links is the footer partial, _footer.html.erb, which has links
for the About and Contact pages (Listing 5.22).

Listing 5.22 Footer partial with links.
app/views/layouts/_footer.html.erb

<footer>
<nav class="round">

<%= link_to "About", about_path %></1li>

5.2 Layout Links 185

<1li><%= link_to "Contact", contact_path $%$></1i>
News</1li>
Rails Tutorial</1li>

</nav>
</footer>

With that, our layout has links to all the static pages created in Chapter 3, so that,
for example, /about goes to the About page (Figure 5.9).

By the way, it’s worth noting that, although we haven’t actually tested for the
presence of the links on the layout, our tests will fail if the routes aren’t defined. You
can check this by commenting out the routes in Listing 5.18 and running your test
suite. For a testing method that actually makes sure the links go to the right places, see
Section 5.5.

ann Ruby on Rails Tutorial Sample App | About
Op O 6 O ST o i

'Sé‘mp'le'App

About Us

is a project to make a book and screencasts 1o teach web
developmant with This is the sample application for the tutonial

Figure 5.9 The About page at /about.

186 Chapter 5: Filling in the Layout

5.3 User Signup: A First Step

As a capstone to our work on the layout and routing, in this section we’ll make a route
for the signup page, which will mean creating a second controller along the way. This
is a first important step toward allowing users to register for our site; we’ll take the next
step, modeling users, in Chapter 6, and we’ll finish the job in Chapter 8.

5.3.1 Users Controller

I¢’s been a while since we created our first controller, the Pages controller, way back in
Section 3.1.2. It’s time to create a second one, the Users controller. As before, we’ll use
generate to make the simplest controller that meets our present needs, namely, one
with a stub signup page for new users. Following the conventional REST architecture
favored by Rails, we’ll call the action for new users new and pass it as an argument to

generate controller to create it automatically (Listing 5.23).

Listing 5.23 Generating a Users controller (with a new action).

$ rails generate controller Users new
create app/controllers/users_controller.rb
route get "users/new"
invoke erb
create app/views/users
create app/views/users/new.html.erb

invoke rspec

create spec/controllers/users_controller_spec.rb
create spec/views/users
create spec/views/users/new.html.erb_spec.rb

invoke helper

create app/helpers/users_helper.rb
invoke rspec
create spec/helpers/users_helper_spec.rb

As with the Pages controller, this generates view and helper specs that we won’t need, so
remove them:

$ rm -rf spec/views
$ rm -rf spec/helpers

5.3 User Signup: A First Step 187

The controller generator makes both the Users controller and a useful default test,
which verifies that the new action responds properly to a GET request (Box 3.1); the code
appears in Listing 5.24. This code should look familiar; it follows the exact same form
as the Pages controller spec last seen in Section 3.3.1 (Listing 3.20).

Listing 5.24 Testing the signup page.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

describe "GET 'new'" do
it "should be successful" do
get 'new'
response.should be_success
end
end
end

By construction, the Users controller already has the proper new action and
new.html.erb template to get this test to pass (Listing 5.25). (To view the page at
/users/new, you might have to restart the server.)

Listing 5.25 Action for the new user (signup) page.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def new
end

end

To get back in the spirit of test-driven development, let’s add a second (failing) test of
our own by testing for a title that contains the string "sign up" (Listing 5.26). Be sure
to add render_views as we did in the Pages controller spec (Listing 3.20); otherwise,
the test won’t pass even after we add the proper title.

188 Chapter 5: Filling in the Layout

Listing 5.26 A test for the signup page title.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

render_views

describe "GET 'new'" do
it "should be successful" do
get 'new'
response.should be_success
end

it "should have the right title" do

get 'new’
response.should have_selector("title", :content => "Sign up")
end
end

end

This test uses the have_selector method we've seen before (Section 3.3.1); note
that, as in Section 3.3.1, have_selector needs the render views line since it tests
the view along with the action.

Of course, by design this test currently fails (Red). To get a custom title, we need to
make an @title instance variable as in Section 3.3.3. We can thus get to Green with
the code in Listing 5.27.

Listing 5.27 Setting the custom title for the new user page.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def new
@title = "Sign up"
end
end

5.3.2 Signup URL

With the code from Section 5.3.1, we already have a working page for new users at
/users/new, but recall from Table 5.1 that we want the URL to be /signup instead.
As in Section 5.2, we'll first write a test (Listing 5.28).

5.3 User Signup: A First Step 189

Listing 5.28 Simple integration test for user signup link.
spec/requests/layout_links spec.rb

require 'spec_helper'

describe "LayoutLinks" do

it "should have a signup page at '/signup'" do
get '/signup'
response.should have_selector('title', :content => "Sign up")
end
end

Note that this is the same file as the one used for the other layout links, even though the
Signup page is in a different controller. Being able to hit pages in multiple controllers is
one of the advantages of using integration tests.

The last step is to make a named route for signups. We'll follow the examples from
Listing 5.18 and add amatch /signup’ rule for the signup URL (Listing 5.29).

Listing 5.29 A route for the signup page.
config/routes.rb

SampleApp: :Application.routes.draw do
get "users/new"

match '/signup', :to => 'users#new'
match '/contact', :to => 'pages#contact'
match '/about', :to => 'pages#about'
match '/help', :to => 'pages#help'

root :to => 'pages#home'

end

Note that we have kept the rule get "users/new", which was generated automatically
by the Users controller generation in Listing 5.23. Currently, this rule is necessary to route
/users/new correctly, but it doesn’t follow the proper REST conventions (Table 2.2),
and we will eliminate it in Section 6.3.3.

190 Chapter 5: Filling in the Layout

At this point, the signup test in Listing 5.28 should pass. All that’s left is to add the
proper link to the button on the Home page. Aswith the other routes,match ’/signup’
gives us the named route signup_path, which we put to use in Listing 5.30.

Listing 5.30 Linking the button to the Signup page.
app/views/pages/home.html.erb

<hl>Sample App</hl>

<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.

</p>

<%= link_to "Sign up now!", signup_path, :class => "signup_button round" $%>

With that, we’re done with the links and named routes, at least until we add a route
for signing in (Chapter 9). The resulting new user page (at the URL /signup) appears
in Figure 5.10.

ann Ruby on Rails Tutonal Sample App | Sgn up '3‘

‘iis-i-_i; H | H * ” herp | flocathost 1000/ sigrup

Sdr‘nple App

Users#new

Find me in app/views/users/new.html.erb

e —

Figure 5.10 The new signup page at /signup.

5.5 Exercises 191

5.4 Conclusion

In this chapter, we’ve hammered our application layout into shape and polished up the
routes. The rest of the book is dedicated to fleshing out the sample application: first, by
adding users who can sign up, sign in, and sign out; next, by adding user microposts;
and, finally, by adding user relationships.

If you're following along with Git, be sure to commit and merge (and, just to be
paranoid, run your tests first):

rspec spec/
git add .
git commit -am "Finished layout and routes"

git checkout master

w o v v 0

git merge filling-in-layout
You might also want to push up to GitHub, or deploy to Heroku:

$ git push
$ git push heroku

5.5 Exercises

1. Replace the local variable 1ogo in Listing 5.21 with a helper method of the same
name, so that the new partial looks like Listing 5.31. Use the code in Listing 5.32
to help you get started.

2. You may have noticed that our tests for the layout links test the routing but don’t
actually check that the links on the layout go to the right pages. One way to im-
plement these tests is to use visit and click_link inside the RSpec integration
test. Fill in the code in Listing 5.33 to verify that all the layout links are properly
defined.

Listing 5.31 Header partial with the logo helper from Listing 5.32.
app/views/layouts/_header.html.erb

<header>
<%= link_to logo, root_path %>
<nav class="round">

<1li><%= link_to "Home", root_path %></1li>
<%= link_to "Help", help_path %></1li>
<1li><%= link_to "Sign in", '#' $%></1li>

192 Chapter 5: Filling in the Layout

</nav>
</header>

Listing 5.32 A template for the Logo helper.
app/helpers/application helper.rb

module ApplicationHelper

def logo
Fill in.
end

Return a title on a per-page basis.
def title

end
end

Listing 5.33 A test for the links on the layout.
spec/requests/layout_links_ spec.rb

require 'spec_helper'

describe "LayoutLinks" do

it "should have the right links on the layout" do
visit root_path
click_link "About"
response.should have_selector('title', :content => "About")
click_link "Help"
response.should # fill in
click_link "Contact"
response.should # fill in
click_link "Home"
response.should # fill in
click_link "Sign up now!"
response.should # fill in

end

end

CHAPTER 6

Modeling and Viewing
Users, Part |

In Chapter 5, we ended with a stub page for creating new users (Section 5.3); over the
course of the next three chapters, we’ll fulfill the promise implicit in this incipient signup
page. The first critical step is to create a data model for users of our site, together with
a way to store that data. Completing this task is the goal for this chapter and the next
(Chapter 7), and we’ll give users the ability to sign up in Chapter 8. Once the sample
application can create new users, we'll let them sign in and sign out (Chapter 9), and in
Chapter 10 (Section 10.2) we’ll learn how to protect pages from improper access.

Taken together, the material in Chapter 6 through Chapter 10 develops a full
Rails login and authentication system. As you may know, there are various pre-built
authentication solutions out there in Rails land; Box 6.1 explains why (at least at first)
it’s a good idea to roll your own.

Box 6.1 Roll Your Own Authentication System

Virtually all web applications nowadays require a login and authentication system
of some sort. Unsurprisingly, most web frameworks have a plethora of options for
implementing such systems, and Rails is no exception. Examples of authentication
and authorization systems include Clearance, Authlogic, Devise, and CanCan (as well
as non-Rails-specific solutions built on top of OpenID or OAuth). Its reasonable to ask
why we should reinvent the wheel. Why not just use an off-the-shelf solution instead
of rolling our own?

There are several reasons why building our own authentication system is a good
idea. First, there is no standard answer to Rails authentication; tying the tutorial to a
specific project would leave us open to the risk that the our particular choice would go
out of fashion or out of date. Moreover, even if we guessed right, the project’s code-
base would continue to evolve, rendering any tutorial explanation quickly obsolete.

193

194 Chapter 6: Modeling and Viewing Users, Part I

Finally, introducing all the authentication machinery at once would be a pedagogi-
cal disaster—to take one example, Clearance contains more than 1,000 lines of code
and creates a complicated data model right from the start. Authentication systems
are a challenging and rich programming exercise; rolling our own means that we can
consider one small piece at a time, leading to a far deeper understanding—of both
authentication and of Rails.

| encourage you to study Chapter 6 through Chapter 10 to give yourself a good
foundation for future projects. When the time comes, if you decide to use an off-the-
shelf authentication system for your own applications, you will be in a good position
both to understand it and to tailor it to meet your specific needs.

In parallel with our data modeling, we’ll also develop a web page for showing users,
which will serve as the first step toward implementing the REST architecture for users
(discussed briefly in Section 2.2.2). Though we won’t get very far in this chapter, our
eventual goal for the user profile pages is to show the user’s profile image, basic user data,
and a list of microposts, as mocked up in Figure 6.1.! (Figure 6.1 has our first example
of lorem ipsum text, which has a fascinating story that you should definitely read about
some time.) In this chapter, we’ll lay the essential foundation for the user show page,
and we'll start filling in the details starting in Chapter 7.

As usual, if you’re following along using Git for version control, now would be a
good time to make a topic branch for modeling users:

$ git checkout master
$ git checkout -b modeling-users

(The first line here is just to make sure that you start on the master branch, so that
the modeling-users topic branch is based on master. You can skip that command if
you’re already on the master branch.)

6.1 User Model

Although the ultimate goal of the next three chapters is to make a signup page for oursite,
it would do little good to accept signup information now, since we don’t currently have
any place to put it. Thus, the first step in signing up users is to make a data structure

1. Mockingbird doesn’t support custom images like the profile photo in Figure 6.1; I put that in by hand using
Adobe Fireworks. The hippo here is from http://www.flickr.com/photos/43803060@N00/24308857/.

http://www.flickr.com/photos/43803060@N00/24308857/

6.1 User Model 195

a4 ~
Name Hippo Potamus

Microposts 67

ppo Potamus 0 oz

following followers

Lorem ipsum dolor sit amet, consectetur
Posted 1 day ago.

Consectetur adipisicing elit
Posted 2 days ago.

Lorem ipsum dolor sit amet, consectetur
Posted 3 days ago.

. J

Figure 6.1 A mockup of our best guess at the user show page.

to capture and store their information. In Rails, the default data structure for a data
model is called, naturally enough, a model (the M in MVC from Section 1.2.6). The
default Rails solution to the problem of persistence is to use a database for long-term
data storage, and the default library for interacting with the database is called Aczive
Record.?

Active Record comes with a host of methods for creating, saving, and finding data
objects, all without having to use the structured query language (SQL)? used by relational

2. The name comes from the “active record pattern”, identified and named in Pazterns of Enterprise Application
Architecture by Martin Fowler.

»

3. Pronounced “ess-cue-ell”, though the alternate pronunciation “sequel” is also common.

196 Chapter 6: Modeling and Viewing Users, Part I

databases. Moreover, Rails has a feature called migrations to allow data definitions to be
written in pure Ruby, without having to learn an SQL data definition language (DDL).*
The effect is that Rails insulates you almost entirely from the details of the data store. In
this book, by using SQLite for development and Heroku for deployment (Section 1.4),
we have developed this theme even further, to the point where we barely ever have to

think about how Rails stores data, even for production applications.®

6.1.1 Database Migrations

You may recall from Section 4.4.5 that we have already encountered, via a custom-built
User class, user objects with name and email attributes. That class served as a useful
example, but it lacked the critical property of persistence: when we created a User object
at the Rails console, it disappeared as soon as we exited. Our goal in this section is to
create a model for users that won’t disappear quite so easily.

As with the User class in Section 4.4.5, we'll start by modeling a user with two
attributes, a name and an email address, the latter of which we’ll use as a unique
username.® (We'll add a password attribute in Section 7.1.) In Listing 4.8, we did this
with Ruby’s attr_accessor keyword:

class User
attr_accessor :name, :email

end

4. In its earliest incarnations, Rails did require knowledge of an SQL DDL. Even after Rails added migrations,
setting up the old default database (MySQL) was quite involved. Happily, as noted in Section 1.2.5, Rails now
uses SQLite by default, which stores its data as a simple file—no setup required.

5. Occasionally, it is necessary to pierce this abstraction layer, but one design goal of this tutorial is to make all the
code database-independent. (Indeed, this is a worthy goal in general.) In case you ever do need to write database-
specific code to deploy on Heroku, you should know that they use the excellent PostgreSQL (“post-gres-cue-ell”)
database. PostgreSQL is free, open-source, and cross-platform; if you develop PostgreSQL-specific applications,
you can install it locally, and configure Rails to use it in development by editing the config/database.yml
file. Such configuration is beyond the scope of this tutorial, but there are lots of resources on the web; use a
search engine to find the most up-to-date information for your platform.

6. By using an email address as the username, we open the theoretical possibility of communicating with our
users at a future date.

6.1 User Model 197

In contrast, when using Rails to model users we don’t need to identify the attributes
explicitly. As noted briefly above, to store data Rails uses a relational database by default,
which consists of tables composed of data rows, where each row has columns of data
ateributes. For example, to store users with names and email addresses, we'll create a
users table with name and email columns (with each row corresponding to one user).
By naming the columns in this way, we’ll let Active Record figure out the User object
attributes for us.

Let’s see how this works. (If this discussion gets too abstract for your taste, be
patient; the console examples starting in Section 6.1.3 and the database browser screen-
shots in Figure 6.3 and Figure 6.8 should make things clearer.) In Section 5.3.1, recall
(Listing 5.23) that we created a Users controller (along with a new action) using the
command

$ rails generate controller Users new

There is an analogous command for making a model: generate model; Listing 6.1
shows the command to generate a User model with two attributes, name and email.

Listing 6.1 Generating a User model.

$ rails generate model User name:string email:string
invoke active_record

create db/migrate/<timestamp>_create_users.rb
create app/models/user.rb

invoke rspec

create spec/models/user_spec.rb

(Note that, in contrast to the plural convention for controller names, model names
are singular: a Users controller, but a User model.) By passing the optional parameters
name:string and email:string, we tell Rails about the two attributes we want, along
with what types those attributes should be (in this case, string). Compare this with
including the action names in Listing 3.4 and Listing 5.23.

One of the results of the generate command in Listing 6.1 is a new file called a
migration. Migrations provide a way to alter the structure of the database incrementally,
so that our data model can adapt to changing requirements. In the case of the User
model, the migration is created automatically by the model generation script; it creates
a users table with two columns, name and email, as shown in Listing 6.2. (We'll see
in Section 6.2.4 how to make a migration from scratch.)

198 Chapter 6: Modeling and Viewing Users, Part I

Listing 6.2 Migration for the User model (to create a users table).
db/migrate/<timestamp>_create_users.rb

class CreateUsers < ActiveRecord::Migration
def self.up
create_table :users do |t|
t.string :name
t.string :email

t.timestamps
end
end

def self.down
drop_table :users
end
end

Note that the name of the migration is prefixed by a timestamp based on when the
migration was generated. In the early days of migrations, the filenames were prefixed
with incrementing integers, which caused conflicts for collaborating teams if multi-
ple programmers had migrations with the same number. Barring highly improbable
millisecond-level simultaneity, using timestamps conveniently avoids such collisions.

Let’s focus on the se1f . up method, which uses a Rails method called create_table
to create a table in the database for storing users. (The use of self in self.up identifies
it as a class method. This doesn’t matter now, but we’ll learn about class methods when
we make one of our own in Section 7.2.4.) The create_table method accepts a block
(Section 4.3.2) with one block variable, in this case called t (for “table”). Inside the block,
the create_table method uses the t object to create name and email columns in the
database, both of type string.” Here the table name is plural (users) even though the
model name is singular (User), which reflects a linguistic convention followed by Rails: a
model represents a single user, whereas a database table consists of many users. The final
line in the block, t.timestamps, is a special command that creates two magic columns
called created_at and updated_at, which are timestamps that automatically record
when a given user is created and updated. (We'll see concrete examples of the magic
columns starting in Section 6.1.3.) The full data model represented by this migration is
shown in Figure 6.2.

7. Don’t worry about exactly how the t object manages to do this; the beauty of abstraction layers is that we
don’t have to know. We can just trust the t object to do its job.

6.1 User Model 199

users
id integer
name string
email string
created_at datetime
updated_at datetime

Figure 6.2 The users data model produced by Listing 6.2.

We can run the migration, known as “migrating up”, using the rake command
(Box 2.1) as follows:®

$ rake db:migrate

(You may recall that we have run this command before, in Section 1.2.5 and
again in Chapter 2.) The first time db:migrate is run, it creates a file called
db/development .sqlite3, which is an SQLite’ database. We can see the struc-
ture of the database using the excellent SQLite Database Browser to open the
db/development.sqlite3 file (Figure 6.3); compare with the diagram in Figure 6.2.
You might note that there’s one column in Figure 6.3 not accounted for in the migration:
the id column. As noted briefly in Section 2.2, this column is created automatically,
and is used by Rails to identify each row uniquely.

You've probably inferred that running db:migrate executes the self.up command
in the migration file. What, then, of self.down? As you might guess, down migrates
down, reversing the effects of migrating up. In our case, this means dropping the users
table from the database:

class CreateUsers < ActiveRecord::Migration

def self.down
drop_table :users
end
end

8. We'll see how to migrate up on a remote Heroku server in Section 7.4.2.

9. Officially pronounced “ess-cue-ell-ite”, although the (mis)pronunciation “sequel-ite” is also common.

200 Chapter 6: Modeling and Viewing Users, Part I

EECREC T
Im‘wmemn]Exe(uteSQL l

| Name Object | Type Schema
» schema_migrations table CREATE TABLE “schema_migrations” (“version” v...
»sqlite_sequence

Tusers table
i field INTEGER PRIMARY KEY

name field varchari255)
email field varchar(255)
created_at field datetime
updated_at field datetime
unique_schema_migrations index

table CREATE TABLE sqlite_sequenceiname seq)

CREATE TABLE “users™ ("id” INTEGER PRIMARY ...

CREATE UNIQUE INDEX “unique_schema_migrat...

Figure 6.3 The SQLite Database Browser with our new users table.

You can execute down with rake using the argument db: rollback:

$ rake db:rollback

This is often useful if you realize there’s another column you want to add but don’t want
the trouble of making a new migration: you can roll back the migration, add the desired
column, and then migrate back up. (This isn’t always convenient, and we’ll learn how
to add columns to an existing table in Section 7.1.2.)

If you rolled back the database, migrate up again before proceeding:

$ rake db:migrate

6.1 User Model 201

6.1.2 The Model File

We've seen how the User model generation in Listing 6.1 generated a migration file
(Listing 6.2), and we saw in Figure 6.3 the results of running this migration: it updated
a file called development .sqlite3 by creating a table users with columns id, name,
email, created_at, and updated_at. Listing 6.1 also created the model itself; the rest
of this section is dedicated to understanding it.

We begin by looking at the code for the User model, which lives in the file user.rb
inside the app/models/ directory; it is, to put it mildly, very compact (Listing 6.3).

Listing 6.3 The brand new User model.
app/models/user.rb

class User < ActiveRecord::Base
end

Recall from Section 4.4.2 that the syntax class User < ActiveRecord::Base
means that the User class inberits from ActiveRecord: :Base, so that the User model
automatically has all the functionality of the ActiveRecord: :Base class. Of course,
knowledge of this inheritance doesn’t do any good unless we know what ActiveRre-
cord: :Base contains, and we’ll get a first taste starting momentarily. Before we move

on, though, there are two tasks to complete.

Model Annotation
Though it’s not strictly necessary, you might find it convenient to annotate your Rails
models using the annotate-models gem (Listing 6.4).

Listing 6.4 Adding the annotate-models gem to the Gemfile.

source 'http://rubygems.org'

group :development do

gem 'rspec-rails', '2.0.1"'
gem 'annotate-models', '1.0.4'
end

group :test do

end

http://rubygems.org'.
http://rubygems.org'.
http://rubygems.org'.
http://rubygems.org

202 Chapter 6: Modeling and Viewing Users, Part I

(We place the annotate-models gem in a group :development block (analogous to
group :test) because the annotations aren’t needed in production applications.) We
next install it with bundle:

$ bundle install

This gives us a command called annotate, which simply adds comments containing
the data model to the model file:

$ annotate
Annotated User

The results appear in Listing 6.5.

Listing 6.5 The annotated User model.
app/models/user.rb

created_at :datetime
updated_at :datetime

== Schema Information

Schema version: <timestamp>
#

Table name: users

#

id :integer not null, primary key
name :string(255)

email :string(255)

#

#

#

class User < ActiveRecord::Base
end

I find that having the data model visible in the model files helps remind me which
attributes the model has, but future code listings will usually omit the annotations for

brevity.

Accessible Attributes
Another step that isn’t strictly necessary but is a really good idea is to tell Rails which
attributes of the model are accessible, i.e., which attributes can be modified by out-

6.1 User Model 203

side users (such as users submitting requests with web browsers). We do this with
the attr_accessible method (Listing 6.6). We'll see in Chapter 10 that using
attr_accessible is important for preventing a mass assignment vulnerability, a dis-
tressingly common and often serious security hole in many Rails applications.

Listing 6.6 Making the name and email attributes accessible.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessible :name, :email
end

6.1.3 Creating User Objects

We've done some good prep work, and now it’s time to cash in and learn about Active
Record by playing with our newly created User model. As in Chapter 4, our tool of choice
is the Rails console. Since we don’t (yet) want to make any changes to our database, we’ll
start the console in a sandbox:

$ rails console --sandbox

Loading development environment in sandbox (Rails 3.0.1)
Any modifications you make will be rolled back on exit
>>

As indicated by the helpful message “Any modifications you make will be rolled back
on exit”, when started in a sandbox the console will “roll back” (i.e., undo) any database
changes introduced during the session.

When working at the console, it’s useful to keep an eye on the development log, which
records the actual low-level SQL statements being issued by Active Record, as shown in
Figure 6.4. The way to get this output at a Unix command line is to tail the log:

$ tail -f log/development.log

The -£ flag ensures that tail will display additional lines as they are written. I recom-
mend keeping an open terminal window for tailing the log whenever working at the
console.

204 Chapter 6: Modeling and Viewing Users, Part I

800 ~/rails_projects/sample_app ="
[sample_app (modeling-users)]$ tail -f log/development.log .
SELECT "users”™.id FROM "users”™ WHERE (LOWER("users”.“email
*) = ‘mhartl®example.com’) LIMIT 1
User Create (@.5ms) INSERT INTO "users”™ ("name”, "created_at”, "updated_at”,
“email”) VALUES('Michael Hartl', '2010-04-14 22:35:22', "2010-04-14 22:35:22°,
‘mhartl@example.com’)
SELECT * FROM “users™ WHERE (“users”."id" = 1)
User Destroy (@.1ms) DELETE FROM "users” WHERE "id" = 1

<« »)

Figure 6.4 Tailing the development log.

In the console session in Section 4.4.5, we created a new user object with User . new,
which we had access to only after requiring the example user file in Listing 4.8. With
models, the situation is different; as you may recall from Section 4.4.4, the Rails console
automatically loads the Rails environment, which includes the models. This means that
we can make a new user object without any further work:

>> User.new
=> #<User id: nil, name: nil, email: nil, created_at: nil, updated_at: nil>

We see here the default console representation of a user object, which prints out the
same attributes shown in Figure 6.3 and Listing 6.5.

When called with no arguments, User .new returns an object with all ni1 attributes.
In Section 4.4.5, we designed the example User class to take an initialization hash to set
the object attributes; that design choice was motivated by Active Record, which allows
objects to be initialized in the same way:

6.1 User Model 205

>> user = User.new(:name => "Michael Hartl", :email => "mhartl@example.com")
=> #<User id: nil, name: "Michael Hartl", email: "mhartl@example.com",
created_at: nil, updated_at: nil>

Here we see that the name and email attributes have been set as expected.

If you’ve been tailing the development log, you may have noticed that no new lines
have shown up yet. This is because calling User.new doesn’t touch the database; it
simply creates a new Ruby object in memory. To save the user object to the database,
we call the save method on the user variable:

>> user.save

=> true

The save method returns true if it succeeds and £alse otherwise. (Currently, all saves
should succeed; we’ll see cases in Section 6.2 when some will fail.) As soon as you save,
you should see a line in the development log with the SQL command to INSERT INTO
nusers". Because of the many methods supplied by Active Record, we won’t ever need
raw SQL in this book, and I'll omit discussion of the SQL commands from now on. But
you can learn a lot by watching the log.

You may have noticed that the new user object had ni1 values for the id and the
magic columns created_at and updated_at attributes. Let’s see if our save changed
anything:

>> user
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-05 00:57:46", updated_at: "2010-01-05 00:57:46">

We see that the id has been assigned a value of 1, while the magic columns have been
assigned the current time and date.!” Currently, the created and updated timestamps
are identical; we’ll see them differ in Section 6.1.5.

10. In case you’re curious about "2010-01-05 00:57:46", I'm not writing this after midnight; the timestamps
are recorded in Coordinated Universal Time (UTC), which for most practical purposes is the same as Greenwich
Mean Time. From the NIST Time and Frequency FAQ: Q: Why is UTC used as the acronym for Coordinated
Universal Time instead of CUT? A: In 1970 the Coordinated Universal Time system was devised by an
international advisory group of technical experts within the International Telecommunication Union (ITU).
TheITU felt it was best to designate a single abbreviation for use in all languages in order to minimize confusion.
Since unanimous agreement could not be achieved on using either the English word order, CUT, or the French
word order, TUC, the acronym UTC was chosen as a compromise.

206 Chapter 6: Modeling and Viewing Users, Part I

As with the User class in Section 4.4.5, instances of the User model allow access to

their attributes using a dot notation:!!

>> user.name

=> "Michael Hartl"

>> user.email

=> "mhartl@example.com"

>> user.updated_at

=> Tue, 05 Jan 2010 00:57:46 UTC +00:00

As we'll see in Chapter 8, it’s often convenient to make and save a model in two
steps as we have above, but Active Record also lets you combine them into one step with

User.create:

>> User.create(:name => "A Nother", :email => "another@example.org")

=> #<User id: 2, name: "A Nother", email: "another@example.org", created_at:
"2010-01-05 01:05:24", updated_at: "2010-01-05 01:05:24">

>> foo = User.create(:name => "Foo", :email => "foo@bar.com")

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2010-01-05
01:05:42", updated_at: "2010-01-05 01:05:42">

Note that User.create, rather than returning true or false, returns the User object
itself, which we can optionally assign to a variable (such as foo in the second command
above).

The inverse of create is destroy:

>> foo.destroy
=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2010-01-05
01:05:42", updated_at: "2010-01-05 01:05:42">

Oddly, gestroy, like create, returns the object in question, though I can’t recall ever
having used the return value of destroy. Even odder, perhaps, is that the destroyed
object still exists in memory:

11. Note the value of user.updated_at. Told you the timestamp was in UTC.

6.1 User Model 207

>> foo
=> #<User id: 3, name: "Foo", email: "foo@bar.com", created_at: "2010-01-05
01:05:42", updated_at: "2010-01-05 01:05:42">

How do we know if we really destroyed an object? And for saved and non-destroyed
objects, how can we retrieve users from the database? It’s time to learn how to use Active
Record to find user objects.

6.1.4 Finding User Objects

Active Record provides several options for finding objects. Let’s use them to find the
first user we created while verifying that the third user (£oo) has been destroyed. We'll
start with the existing user:

>> User.find (1)
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-05 00:57:46", updated_at: "2010-01-05 00:57:46">

Here we’ve passed the id of the user to User. £ind; Active Record returns the user with
that id attribute.
Let’s see if the user with an id of 3 still exists in the database:

>> User.find(3)
ActiveRecord: :RecordNotFound: Couldn't find User with ID=3

Since we destroyed our third user in Section 6.1.3, Active Record can’t find it in the
database. Instead, £ind raises an exception, which is a way of indicating an exceptional
event in the execution of a program—in this case, a nonexistent Active Record id, which
causes £ind to raise an ActiveRecord: : RecordNotFound exception.'?

In addition to the generic £ind, Active Record also allows us to find users by specific

attributes:

12. Exceptions and exception handling are somewhat advanced Ruby subjects, and we won’t need them much
in this book. They are important, though, and I suggest learning about them using one of the Ruby books
recommended in Section 1.1.1.

208 Chapter 6: Modeling and Viewing Users, Part I

>> User.find_by_email ("mhartl@example.com")
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-05 00:57:46", updated_at: "2010-01-05 00:57:46">

Since we will be using email addresses as usernames, this sort of find will be useful when

we learn how to let users sign in to our site (Chapter 8).!3

We'll end with a couple of more general ways of finding users. First, there’s first:

>> User.first
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-05 00:57:46", updated_at: "2010-01-05 00:57:46">

Naturally, £irst just returns the first user in the database. There’s also a11:

>> User.all

=> [#<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-05 00:57:46", updated_at: "2010-01-05 00:57:46">,
#<User id: 2, name: "A Nother", email: "another@example.org", created_at:
"2010-01-05 01:05:24", updated_at: "2010-01-05 01:05:24">]

No prizes for inferring that all returns an array (Section 4.3.1) of all users in the
database.

6.1.5 Updating User Objects

Once we've created objects, we often want to update them. There are two basic ways to
do this. First, we can assign attributes individually, as we did in Section 4.4.5:

>> user # Just a reminder about our user's attributes

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-05 00:57:46", updated_at: "2010-01-05 00:57:46">
>> user.email = "mhartl@example.net"

=> "mhartl@example.net"

>> user.save

=> true

13. To those worried that £ind_by_email will be inefficient if there are a large number of users, you’re ahead
of the game. We'll cover this issue, and its solution via database indices, in Section 6.2.4.

6.1 User Model 209

Note that the final step is necessary to write the changes to the database. We can see
what happens without a save by using reload, which reloads the object based on the
database information:

>> user.email

=> "mhartl@example.net"

>> user.email = "foo@bar.com"
=> "foo@bar.com"

>> user.reload.email

=> "mhartl@example.net"

Now that we’ve updated the user, the magic columns differ, as promised in
Section 6.1.3:

>> user.created_at
=> "2010-01-05 00:57:46"
>> user.updated_at
=> "2010-01-05 01:37:32"

The second way to update attributes is to use update_attributes:

>> user.update_attributes(:name => "The Dude", :email => "dude@abides.org")
=> true

>> user.name

=> "The Dude"

>> user.email

=> "dude@abides.org"

The update_attributes method accepts a hash of attributes, and on success performs
both the update and the save in one step (returning true to indicate that the save went
through). It's worth noting that, once you have defined some attributes as accessible
using attr_accessible (Section 6.1.2), only those attributes can be modified using
update_attributes. If you ever find that your models mysteriously start refusing to
update certain columns, check to make sure that those columns are included in the call

to attr_accessible.

210 Chapter 6: Modeling and Viewing Users, Part I

6.2 User Validations

The User model we created in Section 6.1 now has working name and emai1 attributes,
but they are completely generic: any string (including an empty one) is currently valid in
either case. And yet, names and email addresses are more specific than this. For example,
name should be non-blank, and email should match the specific format characteristic
of email addresses. Moreover, since we’ll be using email addresses as unique usernames
when users sign in, we shouldn’t allow email duplicates in the database.

In short, we shouldn’t allow name and email to be just any strings; we should
enforce certain constraints on their values. Active Record allows us to impose such
constraints using wvalidations. In this section, we'll cover several of the most common
cases, validating presence, length, formatand uniqueness. In Section 7.1.1 we’ll add a final
common validation, confirmation. And we’ll see in Section 8.2 how validations give us
convenient error messages when users make submissions that violate them.

As with the other features of our sample app, we’ll add User model validations using
test-driven development. Since we’ve changed the data model, it’s a good idea to prepare
the test database before proceeding:

$ rake db:test:prepare

This just ensures that the data model from the development database, db/development .
sqlite3, is reflected in the test database, db/test.sqlite3.

6.2.1 Validating Presence

We'll start with a test for the presence of a name attribute. Although the first step in
TDD is to write a failing test (Section 3.2.2), in this case we don’t yet know enough
about validations to write the proper test, so we’ll write the validation first, using the
console to understand it. Then we’ll comment out the validation, write a failing test,
and verify that uncommenting the validation gets the test to pass. This procedure may

seem pedantic for such a simple test, but I have seen'

many “simple” tests that test the
wrong thing; being meticulous about TDD is simply the on/y way to be confident that
we're testing the right thing. (This comment-out technique is also useful when rescuing
an application whose application code is already written but—quelle horreur'—has no

tests.)

14. (and written)

6.2 User Validations 211

The way to validate the presence of the name attribute is to use the validates
method with argument :presence => true, as shown in Listing 6.7. The :presence
=> true argument is a one-element options hash; recall from Section 4.3.4 that curly
braces are optional when passing hashes as the final argument in a method. (As noted in
Section 5.1.1, the use of options hashes is a recurring theme in Rails.)

Listing 6.7 Validating the presence of a name attribute.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessible :name, :email

validates :name, :presence => true
end

As discussed briefly in Section 2.3.2, the use of validates is characteristic of Rails 3.
(In Rails 2.3, we would write validates_presence_of :name instead.)

Listing 6.7 may look like magic, but validates is just a method, as indeed is
attr_accessible. An equivalent formulation of Listing 6.7 using parentheses is as
follows:

class User < ActiveRecord::Base
attr_accessible(:name, :email)

validates (:name, :presence => true)
end

Let’s drop into the console to see the effects of adding a validation to our User
model:"®

$ rails console --sandbox

>> user = User.new(:name => "", :email => "mhartl@example.com")
>> user.save

=> false

>> user.valid?

=> false

15. I'll omit the output of console commands when they are not particularly instructive—for example, the
results of User .new.

212 Chapter 6: Modeling and Viewing Users, Part I

Here user. save returns false, indicating a failed save. In the final command, we use
the valid? method, which returns false when the object fails one or more validations,
and true when all validations pass. (Recall from Section 4.2.3 that Ruby uses a ques-
tion mark to indicate such true/false boolean methods.) In this case, we only have one
validation, so we know which one failed, but it can still be helpful to check using the
errors object generated on failure:

>> user.errors.full messages
=> ["Name can't be blank"]

(The error message is a hint that Rails validates the presence of an attribute using the
blank? method, which we saw at the end of Section 4.4.2.)

Now for the failing test. To ensure that our incipient test will fail, let’s comment
out the validation at this point (Listing 6.8).

Listing 6.8 Commenting out a validation to ensure a failing test.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessible :name, :email

validates :name, :presence => true
end

As in the case of controller generation (e.g., Listing 5.23), the model generate command
in Listing 6.1 produces an initial spec for testing users, but in this case it’s practically

blank (Listing 6.9).

Listing 6.9 The practically blank default User spec.
spec/models/user_spec.rb

require 'spec_helper'

describe User do
pending "add some examples to (or delete) #{__FILE_ }"
end

This simply uses the pending method to indicate that we should fill the spec with
something useful. We can see its effect by running the User model spec:

6.2 User Validations 213

$ rspec spec/models/user_spec.rb
*

Finished in 0.01999 seconds
1 example, 0 failures, 1 pending

Pending:
User add some examples to (or delete)
/Users/mhartl/rails_projects/sample_app/spec/models/user_spec.rb
(Not Yet Implemented)

We'll follow the advice of the default spec by filling it in with some RSpec examples,
shown in Listing 6.10.

Listing 6.10 The initial user spec.
spec/models/user_spec.rb

require 'spec_helper'

describe User do

before(:each) do
@attr = { :name => "Example User", :email => "user@example.com" }
end

it "should create a new instance given valid attributes" do
User.create! (Gattr)

end

it "should require a name"
end

We've seen require and describe before, most recently in Listing 5.28. The next line
is a before (:each) block; this was covered briefly in an exercise (Listing 3.33), and
all it does is run the code inside the block before each example—in this case setting the
@attr instance variable to an initialization hash.

The first example is just a sanity check, verifying that the User model is basically
working. It uses User.create! (read “create bang”), which works just like the create
method we saw in Section 6.1.3 except that it raises an ActiveRecord::Record-
Invalid exception if the creation fails (similar to the ActiveRecord: :RecordNot-
Found exception we saw in Section 6.1.4). As long as the attributes are valid, it won’t
raise any exceptions, and the test will pass.

214 Chapter 6: Modeling and Viewing Users, Part I

The final line is the test for the presence of the name attribute—or rather, it would
be the actual test, if it had anything in it. Instead, the test is just a stub, but a useful
stub it is: it’s a pending spec, which is a way to write a description of the application’s
behavior without worrying yet about the implementation. Listing 6.9 shows an example
of a pending spec using an explicit call to the pending method; in this case, since we
have included only the it part of the example,

it "should require a name"

RSpec infers the existence of a pending spec.
Pending specs are handled well by programs for running specs, as seen for Autotest
in Figure 6.5, and the output of rspec spec/ is similarly useful. Pending specs are

' SAMPLE_APP: Some RSpec
examples are pending.
1 01 2 examples pending

eono ~/rails_projects/sample_app ‘=
/Users/mhartl/. rvm/rubies/ruby-1.8.7-pl74/bin/ruby /Users/mhartl/.rvm/gems/ruby-
1.8.7-pl74/gems/rspec-1.3.0/bin/spec --autospec /Users/mhartl/rails_projects/sam
ple_app/spec/models/user_spec.rb -0 spec/spec.opts

Pending:

User should require a name (Not Yet Implemented)
/Users/mhartl/rails_projects/sample_app/spec/models/user_spec.rb:35

Finished in ©.19183 seconds

Figure 6.5 Autotest (via autotest) with a pending User spec.

6.2 User Validations 215

useful as placeholders for tests we know we need to write at some point but don’t want
to deal with right now.

In order to fill in the pending spec, we need a way to make an attributes hash with
an invalid name. (The @attr hash is valid by construction, with a non-blank name

attribute.) The Hash method merge does the trick, as we can see with rails console:

>> @attr = { :name => "Example User", :email => "user@example.com" }
=> {:name => "Example User", :email => "user@example.com"}
>> @attr.merge(:name => "")

=> {:name => "", :email => "user@example.com"}

With merge in hand, we’re ready to make the new spec (using a trick I'll explain
momentarily), as seen in Listing 6.11.

Listing 6.11 A failing test for validation of the name attribute.
spec/models/user_spec.rb

describe User do

before(:each) do
Qattr = { :name => "Example User", :email => "user@example.com" }
end

it "should require a name" do
no_name_user = User.new(@attr.merge(:name => ""))
no_name_user.should_not be_valid
end
end

Here we use merge to make a new user called no_name_user with a blank name.
The second line then uses the RSpec should_not method to verify that the resulting
user is 7ot valid. The trick I alluded to above is related to be_valid: we know from
earlier in this section that a User object responds to the valid? boolean method. RSpec
adopts the useful convention of allowing us to test 27y boolean method by dropping the
question mark and prepending be_. In other words,

no_name_user .should_not be_valid

216 Chapter 6: Modeling and Viewing Users, Part I
is equivalent to

no_name_user.valid?.should_not == true

Since it sounds more like natural language, writing should_not be_valid is definitely
more idiomatically correct RSpec.

With that, our new test should fail, which we can verify with Autotest or by running
the user_spec.rb file using the spec script:

$ rspec spec/models/user_spec.rb

B

1)

'User should require a name' FAILED
expected valid? to return false, got true

. /spec/models/user_spec.rb:14:

2 examples, 1 failure

Now uncomment the validation (i.e., revert Listing 6.8 back to Listing 6.7) to get
the test to pass:

$ rspec spec/models/user_spec.rb

2 examples, 0 failures

Of course, we also want to validate the presence of email addresses. The test
(Listing 6.12) is analogous to the one for the name attribute.

Listing 6.12 A test for presence of the email attribute.
spec/models/user_spec.rb

describe User do

before(:each) do
@attr = { :name => "Example User", :email => "user@example.com" }
end

6.2 User Validations 217

it "should require an email address" do
no_email_user = User.new(@attr.merge(:email => ""))
no_email_user.should_not be_valid
end
end

The implementation is also virtually the same, as seen in Listing 6.13.

Listing 6.13 Validating the presence of the name and email attributes.
app/models/user.rb

class User < ActiveRecord::Base

attr_accessible :name, :email

validates :name, :presence => true
validates :email, :presence => true
end

Now all the tests should pass, and the “presence” validations are complete.

6.2.2 Length Validation

We've constrained our User model to require a name for each user, but we should go
further: the user’s names will be displayed on the sample site, so we should enforce some
limit on their length. With all the work we did in Section 6.2.1, this step is easy.

We start with a test. There’s no science to picking a maximum length; we’ll just
pull 50 out of thin air as a reasonable upper bound, which means verifying that names
of 51 characters are too long (Listing 6.14).

Listing 6.14 A test for name length validation.
spec/models/user_spec.rb

describe User do
before(:each) do

@attr = { :name => "Example User", :email => "user@example.com" }
end

it "should reject names that are too long" do

218 Chapter 6: Modeling and Viewing Users, Part I

long_name = "a" * 51
long_name_user = User.new(@attr.merge(:name => long_name))
long_name_user.should_not be_valid
end
end

For convenience, we’ve used “string multiplication” in Listing 6.14 to make a string 51
characters long. We can see how this works using the console:

>> s = "a" * 51

=> "aaa’
>> s.length

=> 51

The test in Listing 6.14 should fail. To get it to pass, we need to know about the
validation argument to constrain length, : 1ength, along with the :maximum parameter
to enforce the upper bound (Listing 6.15).

Listing 6.15 Adding a length validation for the name attribute.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessible :name, :email

validates :name, :presence => true,
:length => { :maximum => 50 }
validates :email, :presence => true
end

With our test suite passing again, we can move on to a more challenging validation:
email format.

6.2.3 Format Validation

Our validations for the name attribute enforce only minimal constraints—any non-blank
name under 51 characters will do—but of course the email attribute must satisfy more
stringent requirements. So far we’ve only rejected blank email addresses; in this section,
we'll require email addresses to conform to the familiar pattern user@example.com.
Neither the tests nor the validation will be exhaustive, just good enough to accept
most valid email addresses and reject most invalid ones. We'll start with a couple tests
involving collections of valid and invalid addresses. To make these collections, it’s worth

6.2 User Validations 219

knowing about a useful method for making arrays of strings, as seen in this console
session:

>> $w[foo bar baz]

=> ["foo", "bar", "baz"]

>> addresses = %wl[user@foo.com THE USER@foo.bar.org first.last@foo.jp]
=> ["user@foo.com", "THE_USER@foo.bar.org", "first.last@foo.jp"]

>> addresses.each do |address|

?> puts address

>> end

user@foo.com

THE_USER@foo.bar.org

first.last@foo.jp

Here we've iterated over the elements of the addresses array using the each method
(Section 4.3.2). With this technique in hand, we're ready to write some basic email
format validation tests (Listing 6.16).

Listing 6.16 Tests for email format validation.
spec/models/user_spec.rb

describe User do

before(:each) do
@Qattr = { :name => "Example User", :email => "user@example.com" }

end

it "should accept valid email addresses" do
addresses = %$wl[user@foo.com THE_USER@foo.bar.org first.last@foo.jp]
addresses.each do |address|
valid_email_user = User.new(@attr.merge(:email => address))
valid_email_user.should be_valid
end
end

it "should reject invalid email addresses" do
addresses = %$wl[user@foo,com user_at_foo.org example.user@foo.]
addresses.each do |address|
invalid_email_user = User.new(@attr.merge(:email => address))
invalid_email_user.should_not be_valid
end
end
end

220 Chapter 6: Modeling and Viewing Users, Part I

As noted earlier, these are far from exhaustive, but we do check the common valid
email forms user@foo.com, THE_USER@foo.bar.org (uppercase, underscores, and
compound domains), and first.last@foo.jp (the standard corporate username
first.last, with a two-letter top-level domain jp), along with several invalid forms.

The application code for email format validation uses a regular expression (or regex)
to define the format, along with the :format argument to the validates method

(Listing 6.17).

Listing 6.17 Validating the email format with a regular expression.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessible :name, :email

email_regex = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/1i

validates :name, :presence => true,
:length => { :maximum => 50 }
validates :email, :presence => true,
:format => { :with => email_regex }
end

Here email_regex is a regular expression, also known as a regex. The code

email_regex = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/1

validates :email, :presence => true,
:format => { :with => email_regex }

ensures that only email addresses that match the pattern will be considered valid.

So, where does the pattern come from? Regular expressions consist of a terse
(some would say unreadable) language for matching text patterns; learning to construct
regexes is an art, and to get you started I've broken email_regex into bite-sized pieces
(Table 6.1).1° To really learn about regular expressions, though, I consider the amazing
Rubular regular expression editor (Figure 6.6) to be simply essential.!” The Rubular

16. Note that, in Table 6.1, “letter” really means “lower-case letter”, but the i at the end of the regex enforces
case-insensitive matching.

17. If you find it as useful as I do, I encourage you to donate to Rubular to reward developer Michael Lovitt
for his wonderful work.

6.2 User Validations

221

Table 6.1 Breaking down the email regex from Listing 6.17

Expression Meaning
/ANA[\w+\-.]+@[a-z\d\-.]1+\.[a-z]+\z/1i full regex

/ start of regex

\A match start of a string

\w+\-. 1+ at least one word character, plus, hyphen, or dot
e literal “at sign”

la-z\d\-.]+ at least one letter, digit, hyphen, or dot
\. literal dot

la-z]+ at least one letter

\z match end of a string

/ end of regex

case insensitive

Your regular sxpression:

7

Your test siring:

Rubular

a Ruby regular expression editor

Match result:

Match caplures:

maks parmaliak copy ta clipboard claar Hialds

Figure 6.6 The awesome Rubular regular expression editor.

222 Chapter 6: Modeling and Viewing Users, Part I

website has a beautiful interactive interface for making regular expressions, along with a
handy regex quick reference. I encourage you to study Table 6.1 with a browser window
open to Rubular—no amount of reading about regular expressions can replace a couple
of hours playing with Rubular.

By the way, there actually exists a full regex for matching email addresses according
to the official standard, but it’s really not worth the trouble. The one in Listing 6.17 is
fine, maybe even better than the official one.'

The tests should all be passing now. (In fact, the tests for valid email addresses should
have been passing all along; since regexes are notoriously error-prone, the valid email
tests are there mainly as a sanity check on email_regex.) This means that there’s only

one constraint left: enforcing the email addresses to be unique.

6.2.4 Uniqueness Validation

To enforce uniqueness of email addresses (so that we can use them as usernames), we’ll
be using the :unique option to the validates method. But be warned: there’s a major
caveat, so don’t just skim this section—read it carefully.

We'll start, as usual, with our tests. In our previous model tests, we've mainly used
User.new, which just creates a Ruby object in memory, but for uniqueness tests we
actually need to put a record into the database.!” The (first) duplicate email test appears
in Listing 6.18.

Listing 6.18 A test for the rejection of duplicate email addresses.
spec/models/user_spec.rb

describe User do

before(:each) do
@attr = { :name => "Example User", :email => "user@example.com" }
end

18. Did you know that "Michael Hartl"@example.com, with quotation marks and a space in the middle, is
a valid email address according to the standard? Incredibly, it is—but it’s absurd. If you don’t have an email
address that contains only letters, numbers, underscores, and dots, then get one. N.B. The regex in Listing 6.17
allows plus signs, too, because Gmail (and possibly other email services) does something useful with them: for
example, to filter orders from Amazon, you can use username+amazon@gmail . com, which will go to the Gmail
address username@gmail . com, allowing you to filter on the string amazon.

19. As noted briefly in the introduction to this section, there is a dedicated test database, db/test.sqlite3,
for this purpose.

6.2 User Validations 223

it "should reject duplicate email addresses" do
Put a user with given email address into the database.
User.create! (@Gattr)
user_with_duplicate_email = User.new(@attr)
user_with_duplicate_email.should_not be_valid
end
end

The method here is to create a user and then try to make another one with the same
email address. (We use the noisy method createt, first seen in Listing 6.10, so that it
will raise an exception if anything goes wrong. Using create, without the bang 1, risks
having a silent error in our test, a potential source of elusive bugs.) We can get this test
to pass with the code in Listing 6.19.%

Listing 6.19 Validating the uniqueness of email addresses.
app/models/user.rb

class User < ActiveRecord::Base

validates :email, :presence => true,
:format => { :with => email_regex },
:unigqueness => true
end

We're not quite done, though. Email addresses are case-insensitive—£foo@bar . com
goes to the same place as FOO@BAR.COM or FoO@BAr.coM—so our validation should
cover this case as well. We test for this with the code in Listing 6.20.

Listing 6.20 A test for the rejection of duplicate email addresses, insensitive to case.
spec/models/user_spec.rb

describe User do

before(:each) do
@Qattr = { :name => "Example User", :email => "user@example.com" }

20. If you’re wondering why the create! line in Listing 6.10 doesn’t cause this to fail by creating a duplicate
user, it’s because Rails tests are ransactional: each test is wrapped in a transaction, which rolls back the database
after the test executes. This way, each test runs against a fresh database.

224 Chapter 6: Modeling and Viewing Users, Part I

end

it "should reject email addresses identical up to case" do
upcased_email = Qattr[:email] .upcase
User.create! (Qattr.merge(:email => upcased_email)
user_with_duplicate_email = User.new(@attr)
user_with_duplicate_email.should_not be_valid
end
end

Here we are using the upcase method on strings (seen briefly in Section 4.3.2). This
test does the same thing as the first duplicate email test, but with an upper-case email
address instead. If this test feels a little abstract, go ahead and fire up the console:

$ rails console --sandbox

>> @attr = { :name => "Example User", :email => "user@example.com" }
=> {:name => "Example User", :email => "user@example.com"}

>> upcased_email = @attr[:email].upcase

=> "USER@EXAMPLE.COM"

>> User.create! (Qattr.merge(:email => upcased_email))

>> user_with_duplicate_email = User.new(@attr)

>> user_with duplicate_email.valid?

=> true

Of course, Currently user with duplicate email.wvalid? is true, since this is
a failing test, but we want it to be false. Fortunately, :uniqueness accepts an option,
:case_sensitive, for just this purpose (Listing 6.21).

Listing 6.21 Validating the uniqueness of email addresses, ignoring case.
app/models/user.rb

class User < ActiveRecord::Base

validates :email, :presence => true,
:format => { :with => email_regex },
:uniqueness => { :case_sensitive => false }

end

6.2 User Validations 225

Note that we have simply replaced true with :case_sensitive => false; Rails
infers in this case that :uniqueness should be true. At this point, our application (sort
of) enforces email uniqueness, and our test suite should pass.

The Uniqueness Caveat

There’s just one small problem, the caveat alluded to above:

Using validates :uniqueness does not guarantee uniqueness.
D’oh! But what can go wrong? Here’s what:

1. Alice signs up for the sample app, with address alice@wonderland.com.

2. Alice accidentally clicks on “Submit” swice, sending two requests in quick succession.

3. The following sequence occurs: request 1 creates a user in memory that passes
validation; request 2 does the same; request 1’s user gets saved; request 2’s user gets
saved.

4. Result: two user records with the exact same email address, despite the uniqueness
validation.

If the above sequence seems implausible, believe me, it isn’t: it happens on any Rails
website with significant traffic.?! Luckily, the solution is straightforward to implement;
we just need to enforce uniqueness at the database level as well. Our method is to create
a database 7ndex on the email column, and then require that the index be unique.

The email index represents an update to our data modeling requirements, which (as
discussed in Section 6.1.1) is handled in Rails using migrations. We saw in Section 6.1.1
that generating the User model automatically created a new migration (Listing 6.2); in
the present case, we are adding structure to an existing model, so we need to create a
migration directly using the migration generator:

$ rails generate migration add_email_uniqueness_index

Unlike the migration for users, the email uniqueness migration is not pre-defined,
so we need to fill in its contents with Listing 6.22.2

21. Yes, it happened to me. How do you think I found out about this issue?

22. Of course, we could just edit the migration file for the users table in Listing 6.2 but that would require
rolling back and then migrating back up. The Rails Way is to use migrations every time we discover that our
data model needs to change.

226 Chapter 6: Modeling and Viewing Users, Part I

Listing 6.22 The migration for enforcing email uniqueness.
db/migrate/<timestamp>_add_email uniqueness_index.rb

class AddEmailUniquenessIndex < ActiveRecord::Migration
def self.up
add_index :users, :email, :unique => true

end

def self.down
remove_index :users, :email
end
end

This uses a Rails method called add_index to add an index on the email column of the
users table. The index by itself doesn’t enforce uniqueness, but the option :unique
=> true does.

The final step is to migrate the database:

$ rake db:migrate

Now the Alice scenario above will work fine: the database will save a user record based on
the first request, and will reject the second save for violating the uniqueness constraint.
(An error will appear in the Rails log, but that doesn’t do any harm. You can actually
catch the ActiveRecord: : Statement Invalid exception that gets raised—see Insoshi
for an example—but in this tutorial we won’t bother with this step.) Adding this index
on the email attribute accomplishes a second goal, alluded to briefly in Section 6.1.4: it
fixes an efficiency problem in find_by_email (Box 6.2).

Box 6.2 Database Indices

When creating a column in a database, it is important to consider if we will need to
find records by that column. Consider, for example, the email attribute created by
the migration in Listing 6.2. When we allow users to sign in to the sample app starting
in Chapter 8, we will need to find the user record corresponding to the submitted
email address; unfortunately, based on the naive data model, the only way to find a
user by email address is to look through each user row in the database and compare its
email attribute to the given email. This is known in the database business as a full-table
scan, and for a real site with thousands of users it is a Bad Thing.

6.3 Viewing Users 227

Putting an index on the email column fixes the problem. To understand a database
index, it's helpful to consider the analogy of a book index. In a book, to find all the
occurrences of a given string, say ““foobar”, you would have to scan each page for
“foobar’’. With a book index, on the other hand, you can just look up ““foobar” in the
index to see all the pages containing “foobar”. A database index works essentially the
same way.

6.3 Viewing Users

We're not quite done with the basic user model—we still need to add passwords, a task
for Chapter 7—but we do have enough in place to make a minimalist page for showing
user information. This will allow a gentle introduction to the REST style of organizing
the actions for our site’s users. Since this is just a rough demonstration for now, there

are no tests in this section; we’ll add tests when we flesh out the user view in Section 7.3.

6.3.1 Debug and Rails Environments

As preparation for adding dynamic pages to our sample application, now is a good time to
add some debug information to our site layout (Listing 6.23). This displays some useful
information about each page using the built-in debug method and params variable
(which we’ll learn more about in Section 6.3.2), as seen in Figure 6.7.

Listing 6.23 Adding some debug information to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

<body>

<div class="container">

<%= render 'layouts/footer' %>
<%= debug (params) if Rails.env.development? %>
</div>
</body>
</html>

228 Chapter 6: Modeling and Viewing Users, Part I

Ruby on Rails Tutorial Sample App | Home]

hitp / lecaihast 3000/ - n

Sample App

Sample App

This is the hameé page for the Rut Pa nonal samplé application

map:HashWithing1fferentAccess

one

centroller: pages

‘E—g i il'lllii- _i'I I

Figure 6.7 The sample application Home page (/) with debug information at the bottom.

Since we don’t want to display debug information to users of a deployed application, we
use

if Rails.env.development?

to restrict the debug information to the development environment. Though we’ve seen
evidence of Rails environments before (most recently in Section 6.1.3), this is the first
time it has mattered to us.

Rails comes equipped with three environments: test, development, and produc-
tion.?? The default environment for the Rails console is development:

23. You can define your own custom environments as well; see the Railscast on adding an environment for
details.

6.3 Viewing Users 229

$ rails console

Loading development environment (Rails 3.0.1)
>> Rails.env

=> "development"

>> Rails.env.development?

=> true

>> Rails.env.test?

=> false

As you can see, Rails provides a Rails object with an env attribute and associated
environment boolean methods. In particular, Rails.env.development? is true only
in a development environment, so the Embedded Ruby

<%= debug (params) if Rails.env.development? %>

won’t be inserted into production applications or tests. (Inserting the debug information
into tests probably doesn’t do any harm, but it probably doesn’t do any good, either, so
it’s best to restrict the debug display to development only.)

If you ever need to run a console in a different environment (to debug a test, for
example), you can pass the environment as a parameter to the console script:

S rails console test

Loading test environment (Rails 3.0.0)
>> Rails.env

=> "test"

As with the console, development is the default environment for the local Rails
server, but you can also run it in a different environment:

$ rails server --environment production

Ifyou view your app running in production, it won’t work withouta production database,
which we can create by running rake db:migrate in production:

$ rake db:migrate RAILS_ENV=production

230 Chapter 6: Modeling and Viewing Users, Part I

(I find it confusing that the console, server, and migrate commands specify non-default
environments in three mutually incompatible ways, which is why I bothered showing
all three.)

By the way, if you have deployed your sample app to Heroku, you can see its

environment using the heroku command, which provides its own (remote) console:

$ heroku console

Ruby console for yourapp.heroku.com
>> Rails.env

=> "production"

>> Rails.env.production?

=> true

Naturally, since Heroku is a platform for production sites, it runs each application in a
production environment.

6.3.2 User Model, View, Controller

In order to make a page to view a user, we'll use the User model to put a user into
the database, make a view to display some user information, and then add an action
to the Users controller to handle the browser request. In other words, for the first time
in this tutorial, we’ll see in one place all three elements of the model-view-controller
architecture first discussed in Section 1.2.6.

Our first step is to create a user using the console, which we’ll take care 7ot to start
in a sandbox since this time the whole point is to save a record to the database:

$ rails console

Loading development environment (Rails 3.0.1)

>> User.create! (:name => "Michael Hartl", :email => "mhartl@example.com")
=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",
created_at: "2010-01-07 23:05:14", updated_at: "2010-01-07 23:05:14">

To double-check that this worked, let’s look at the row in the development database
using the SQLite Database Browser (Figure 6.8). Note that the columns correspond to
the attributes of the data model defined in Section 6.1.

Next comes the view, which is minimalist to emphasize that this is just a
demonstration (Listing 6.24). We use the standard Rails location for showing a

user, app/views/users/show.html.erb; unlike the new.html.erb view, which we

6.3 Viewing Users 231

[Database Structure ' Browse Data] Execute SQL |

Table: | users W (D) { NewRecord) [Delete Record)

E 1 Michael Hartl mharti@example.com 2010-01-07 23:05:14 2010-01-07 23:05:14

Figure 6.8 A user row in the SQLite database db/development.sqglite3.

created with the generator in Listing 5.23, the show.html.erb file doesn’t currently
exist, so you'll have to create it by hand.

Listing 6.24 A stub view for showing user information.
app/views/users/show.html.erb

<%= @Quser.name %>, <%= Quser.email &>

This view uses Embedded Ruby to display the user’s name and email address, assuming
the existence of an instance variable called @user. Of course, eventually the real user
show page will look very different, and won’t display the email address publicly.

232 Chapter 6: Modeling and Viewing Users, Part I

Finally, we’ll add the show action to the Users controller (corresponding to the
show.html.erb view) with the code in Listing 6.25, which defines the @user instance
variable needed by the view.

Listing 6.25 The Users controller with a show action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@Quser = User.find(params|[:1d])
end

def new
@title = "Sign up"
end
end

Here we've gotten a little ahead of ourselves by using the standard Rails params object
to retrieve the user id. When we make the appropriate request to the Users controller,
params [:id] will be the user id 1, so the effect is the same as the £ind command

User.find(1)

we saw in Section 6.1.4.

Although the show view and action are now both defined, we still don’t have a way
to view the page itself. This requires defining the proper rule in the Rails routes file, as
we’ll see in the next section.

6.3.3 A Users Resource

Our method for displaying the user show page will follow the conventions of the REST ar-
chitecture favored in Rails applications. This style is based on the ideas of representational
state transfer identified and named by computer scientist Roy Fielding in his doctoral
dissertation Architectural Styles and the Design of Network Based Software Architectures.*

24. Fielding, Roy Thomas. Architectural Styles and the Design of Network Based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

6.3 Viewing Users 233

Action Controller. Exception caught Lo)

g/ flocabhost: 3000 /uren /1 v §

Routing Error

Figure 6.9 The initial effect of hitting /users/1.

The REST design style emphasizes representing data as resources that can be created,
shown, updated, or destroyed—four actions corresponding to the four fundamental
operations POST, GET, PUT, and DELETE defined by the HTTP standard (Box 3.1).

When following REST principles, resources are typically referenced using the re-
source name and a unique identifier. What this means in the context of users—which
we’re now thinking of as a Users resource—is that we should view the user with id 1 by
issuing a GET request to the URL /users/1. Here the show action is implicit in the
type of request—when Rails’ REST features are activated, GET requests are automatically
handled by the show action.

Unfortunately, the URL /users/1 doesn’t work quite yet due to a routing error
(Figure 6.9). We can get the REST-style Users URL to work by adding users as a resource
to config/routes.rb, as seen in Listing 6.26.

234 Chapter 6: Modeling and Viewing Users, Part I

Listing 6.26 Adding a Users resource to the routes file.
config/routes.rb

SampleApp: :Application.routes.draw do

resources :users

match '/signup', :to => 'users#new'

end

After adding the routes for the Users resource, the URL /users/1 works perfectly
(Figure 6.10).

Mg [rlecaihost 3000/ users /1

Ruby on Rails Tutoria

Sample App

Michael Hartl, mharti@example.com

'mapMashWiIthingifferentAccess
action. show
1g: "1*
controller: users

Figure 6.10 The user show page at /users/1 after adding a Users resource.

6.3 Viewing Users 235

Table 6.2 RESTful routes provided by the Users resource in Listing 6.26

HTTP

Request URL Action Named Route Purpose

GET /users index users_path page to list all users

GET /users/1l show user_path(1) page to show user with id 1

GET /users/new new new_user_path page to make a new user (signup)

POST /users create wusers_path create a new user

GET /users/1 edit edit_user_path(1) page to edit user with id 1
/edit

PUT /users/1l update user_path(1) update user with id 1

DELETE /users/1l destroy user_path(1) delete user with id 1

You might have noticed that Listing 6.26 removed the line

get "users/new"

last seen in Listing 5.29. This is because the one additional resource line in Listing 6.26
doesn’t just add a working /users/1 URL; it endows our sample application with all
the actions needed for a RESTful Users resource,? along with a large number of named
routes (Section 5.2.3) for generating user URLs. The resulting correspondence of URLs,
actions, and named routes is shown in Table 6.2. (Compare to Table 2.2.) Over the
course of the next three chapters, we'll cover all of the other entries in Table 6.2 as we
fill in all the actions necessary to make Users a fully RESTful resource.

params in debug

Before leaving the user show page, we’ll take a moment to examine the debug information
produced by Listing 6.23. If you look closely at Figure 6.10, you'll see that it includes
useful information about the page being rendered:?°

25. This means that the routing works, but the corresponding pages don’t necessarily work at this point. For
example, /users/1/edit gets routed properly to the edit action of the Users controller, but since the edit
action doesn’t exist yet actually hitting that URL will return an error.

26. Some of this tutorial’s screenshots show debug information with output like 1map : HashwithIndifferent-
Access instead of !map:ActiveSupport : :HashWithIndifferentAccess. This is simply a minor difference
between Rails 2.3 and Rails 3. Since the rendered web pages are otherwise identical between Rails versions, this
one footnote saves me the trouble of redoing all the screenshots.

236 Chapter 6: Modeling and Viewing Users, Part I

--- Imap:ActiveSupport: :HashWithIndifferentAccess
action: show

id: e

controller: users

This is a YAML? representation of params, which (as hinted at by the name Hash-
WithIndifferentAccess) is basically a hash. We see that its controller is users, its
action is show, and its id attribute is "1". Although you will rarely have occasion to use
params[:controller] or params[:action], using params[:id] to pull out the id
from the URL is a common Rails idiom. In particular, we used the code

User.find (params|[:1d])

in Listing 6.25 to find the user with id 1. (The £ind method knows how to convert the
string "1 into the integer 1.)

The debug information often provides useful feedback when developing Rails ap-
plication, and I suggest getting in the habit of checking it whenever your application
doesn’t behave as expected.

6.4 Conclusion

This chapter is the first half of the two-step process of creating a working User model.
Our users now have name and email attributes, together with validations enforcing
several important constraints on their values. We’ve also taken a first small step toward a
working user show page and a Users resource based on the principles of representational
state transfer (REST). In Chapter 7, we’ll complete the process by adding user passwords
and a more useful user view.

If you’re using Git, now would be a good time to commit if you haven’t done so in
a while:

$ git add .
$ git commit -am "Finished first cut of the User model"

27. The Rails debug information is shown as YAML (a recursive acronym standing for “YAML Ain’t Markup
Language”), which is a friendly data format designed to be both machine- and human-readable.

6.5 Exercises 237

6.5 Exercises

1. Read through the Rails API entry for ActiveRecord: :Base to get a sense of its
capabilities.

2. Study the entry in the Rails API for the validates method to learn more about its
capabilities and options.

3. Spend a couple hours playing with Rubular.

This page intentionally left blank

CHAPTER /

Modeling and Viewing
Users, Part Il

In Chapter 6, we created the first iteration of a User model to represent users of our
application, but the job is only half-done. Virtually any website with users, including
ours, needs authentication as well, but currently any user signing up for the site would
only have a name and email address, with no way to verify their identity. In this chapter,
we'll add the password attribute needed for an initial user signup (Chapter 8) and for
signing in with an email/password combination (Chapter 9). In the process, we’ll re-
use several of the ideas from Chapter 6, including migrations and validations, and also
introduce some new ideas such as virtual attributes, private methods, and Active Record
callbacks.

Once we have a working password attribute, we’ll make a working action and view
for showing user profiles (Section 7.3). By the end of the chapter, our user profiles will
display names and profile photos (as indicated by the mockup in Figure 7.1), and they
will be nicely tested with user factories.

7.1 Insecure Passwords

Making industrial-strength passwords requires a lot of machinery, so we’ll break the
process into two main steps. In this section, we’ll make a password attribute and add
validations. The resulting User model will be functionally complete but badly insecure,
with the passwords stored as plain text in the database. In Section 7.2, we'll fix this
problem by encrypting the passwords before saving them, thereby protecting our site
against potential attackers.

239

240 Chapter 7: Modeling and Viewing Users, Part II

C)

1 HUCkle Berry Name Huckle Berry

URL [lusers/7

Figure 7.1 A mockup of the user profile made in Section 7.3.

7.1.1 Password Validations

Even though we have yet even to add a column for passwords to our database, we're
already going to start writing tests for them. Our initial plan is to have tests to validate
the presence, length, and confirmation of passwords. This is our biggest single block
of tests so far, so see if you can read it all in one go. If you get stuck, it might help to
review the analogous validations from Section 6.2 or skip ahead to the application code
in Listing 7.2.

In order to minimize typos in passwords, when making a user signup page in
Chapter 8 we'll adopt the common convention of requiring that users confirm their
passwords. To get started, let’s review the user attributes hash last seen in Listing 6.20:

7.1 Insecure Passwords 241

describe User do

before(:each) do
@attr = { :name => "Example User", :email => "user@example.com" }
end

end

To write tests for passwords, we'll need to add zwo new attributes to the @attr hash,
password and password_confirmation. As you can probably guess, the pass-
word_confirmation attribute will be used for the password confirmation step.

Let’s write tests for the presence of the password and its confirmation, together with
tests confirming that the password is a valid length (restricted somewhat arbitrarily to
be between 6 and 40 characters long). The results appear in Listing 7.1.

Listing 7.1 Tests for password validations.
spec/models/user_spec.rb

require 'spec_helper'

describe User do

before(:each) do
@Gattr = {
:name => "Example User",
:email => "user@example.com",
:password => "foobar",
:password_confirmation => "foobar"
}
end

it "should create a new instance given valid attributes" do
User.create! (@Gattr)
end

describe "password validations" do

it "should require a password" do
User.new(@attr.merge (:password => "", :password_confirmation => "")).
should_not be_valid
end

242 Chapter 7: Modeling and Viewing Users, Part II

it "should require a matching password confirmation" do
User.new (Qattr.merge (:password_confirmation => "invalid")).
should_not be_valid
end

it "should reject short passwords" do
short = "a" * 5
hash = Qattr.merge(:password => short, :password_confirmation => short)
User.new (hash) .should_not be_valid

end

it "should reject long passwords" do
long = "a" * 41
hash = @attr.merge(:password => long, :password_confirmation => long)
User.new (hash) .should_not be_valid
end
end
end

Note in Listing 7.1 how we first collect a set of valid user attributes in @attr. If
for some reason those attributes aren’t valid—as would be the case, for example, if we
didn’t implement password confirmations properly—then the first test

it "should create a new instance given valid attributes" do
User.create! (@Gattr)
end

would catch the error. The subsequent tests then check each validation in turn, using
the same @attr.merge technique first introduced in Listing 6.11.

Now for the application code, which contains a trick. Actually, it contains #wo tricks.
First, you might expect at this point that we would run a migration to add a password
attribute to the User model, as we did with the name and emai1 attributes in Listing 6.1.
But this is not the case: we will store only an encrypted password in the database; for the
password, we will introduce a virtual attribute (that is, an attribute not corresponding to
a column in the database) using the attr_accessor keyword, much as we did with the
original name and emai1l attributes for the example user in Section 4.4.5. The password
attribute will not ever be written to the database, but will exist only in memory for use
in performing the password confirmation step (implemented next) and the encryption
step (implemented in Section 7.1.2 and Section 7.2).

7.1 Insecure Passwords 243

The second trick is that we will 7ot introduce a password_confirmation attribute,
not even a virtual one. Instead, we will use the special validation

validates :password, :confirmation => true

which will automatically create a virtual attribute called password_confirmation,
while confirming that it matches the password attribute at the same time.

Thus prepared to understand the implementation, let’s take a look at the code itself
(Listing 7.2).

Listing 7.2 Validations for the password attribute.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessor :password

attr_accessible :name, :email, :password, :password_confirmation

Automatically create the virtual attribute 'password confirmation'.
validates :password, :presence => true,
:confirmation => true,
:length => { :within => 6..40 }
end

As promised, we useattr_accessor :password to createavirtual password attribute
(as in Section 4.4.5). Then, since we’ll be accepting passwords and password confirma-
tions as part of the signup process in Chapter 8, we need to add the password and its
confirmation to the list of accessible attributes (first mentioned in Section 6.1.2), which
we've done in the line

attr_accessible :name, :email, :password, :password_confirmation

Next come the password validations. They require the presence of a :password
(as in, e.g., Listing 6.7) and include :confirmation => true to reject users whose
password and password confirmations don’t match. We also have a second application of

244 Chapter 7: Modeling and Viewing Users, Part II

length validation; in Listing 6.15 we constrained the name attribute to be 50 characters
or less using the :maximum option:

validates :name, :presence => true,
:length => { :maximum => 50 }

For the password length validation, instead we’ve used the :within option, passing it
the range' 6. .40 to enforce the desired length constraints.

7.1.2 A Password Migration

At this point, you may be concerned that we're not storing user passwords anywhere;
since we've elected to use a virtual password, rather than storing it in the database, it exists
only in memory. How can we use this password for authentication? The solution is to
create a separate attribute dedicated to password storage, and our strategy will be to use
the virtual password as raw material for an encrypted password, which we willstore in the
database upon user signup (Chapter 8) and retrieve later for use in user authentication
(Chapter 9).

Let’s plan to store the encrypted password using an encrypted_password attribute
in our User model. We'll discuss the implementation details in Section 7.2, but we can
get started with our encrypted password tests by noting that the encrypted password
should at the least exisz. We can test this using the Ruby method respond_to?, which
accepts a symbol and returns true if the object responds to the given method or attribute
and false otherwise:

S rails console --sandbox

>> user = User.new

>> user.respond_to? (:password)

=> true

>> user.respond_to? (:encrypted_password)
=> false

1. We saw ranges before in Section 4.3.1.

7.1 Insecure Passwords 245
We can test the existence of an encrypted password attribute with the code in
Listing 7.3, which uses RSpec’s respond_to helper method.

Listing 7.3 Testing for the existence of an encrypted_password attribute.
spec/models/user_spec.rb

describe User

describe "password encryption" do

before(:each) do
@Quser = User.create! (Gattr)
end

it "should have an encrypted password attribute" do
@user.should respond_to(:encrypted_password)
end
end
end

Note that in the before(:each) block we create a user, rather than just calling
User.new. We could actually get this test to pass using User.new, but (as we'll see
momentarily) sezting the encrypted password will require that the user be saved to
the database. Using create! in this first case does no harm, and putting it in be-
fore (:each) will allow us to keep all the encrypted password tests in one describe
block.

To get this test to pass, we'll need a migration to add the encrypted_password
attribute to the users table:

$ rails generate migration add_password_to_users encrypted_password:string

Here the firstargument is the migration name, and we’ve also supplied a second argument
with the name and type of attribute we want to create. (Compare this to the original
generation of the users table in Listing 6.1.) We can choose any migration name we
want, but it’s convenient to end the name with _to_users, since in this case Rails can
automatically construct a migration to add columns to the users table. Moreover, by
including the second argument, we’ve given Rails enough information to construct the
entire migration for us, as seen in Listing 7.4.

246 Chapter 7: Modeling and Viewing Users, Part II

Listing 7.4 The migration to add an encrypted_password column to the users table.
db/migrate/<timestamp>_add_password_to_users.rb

class AddPasswordToUsers < ActiveRecord::Migration
def self.up
add_column :users, :encrypted_password, :string

end

def self.down
remove_column :users, :encrypted_password
end
end

This code uses the add_column method to add an encrypted_password column to
the users table (and the complementary remove_column method to remove it when
migrating down). The result is the data model shown in Figure 7.2.

Now if we run the migration and prepare the test database, the test should pass, since
the User model will respond to the encrypted_password attribute. (Be sure to close
any Rails consoles started in a sandbox; the sandbox locks the database and prevents the

migration from going through.)

$ rake db:migrate
$ rake db:test:prepare

Of course, we can run the full test suite with rspec spec/, but sometimes it’s convenient
to run just oze RSpec example, which we can do with the -e (“example”) flag:

$ rspec spec/models/user_spec.rb \
> -e "should have an encrypted password attribute"

1 example, 0 failures

users
id integer
name string
email string
encrypted_password string
created_at datetime
updated_at datetime

Figure 7.2 The User model with an added (encrypted) password attribute.

7.1 Insecure Passwords 247

7.1.3 An Active Record Callback

Now that our User model has an attribute for storing the password, we need to arrange
to generate and save the encrypted password when Active Record saves the user to the
database. We'll do this with a technique called a callback, which is a method that gets
invoked at a particular point in the lifetime of an Active Record object. In the present
case, we'll use a before_save callback to create encrypted_password just before the
user is saved.?

We start with a test for the encrypted password attribute. Since we’re deferring the
implementation details—and, in particular, the method of encryption—to Section 7.2,
in this section we’ll just make sure that a saved user’s encrypted_password attribute is
not blank. We do this by combining the blank? method on strings (Section 4.4.2)
with the RSpec convention for boolean methods (first seen in the context of
valid?/be_valid in Listing 6.11), yielding the test in Listing 7.5.

Listing 7.5 Testing that the encrypted_password attribute is nonempty.
spec/models/user_spec.rb

describe User

describe "password encryption" do

before(:each) do
@user = User.create! (Gattr)
end

it "should set the encrypted password" do
@user.encrypted_password.should_not be_blank
end
end
end

This code verifies that encrypted_password.blank? is not true using the construction
should_not be_blank.

2. For more details on the kind of callbacks supported by Active Record, see the discussion of callbacks at the
Rails Guides.

248 Chapter 7: Modeling and Viewing Users, Part II

To get this test to pass, we register a callback called encrypt_password by passing
a symbol of that name to the before_save method, and then define an encrypt_-
password method to perform the encryption. With the before_save in place, Active
Record will automatically call the corresponding method before saving the record. The
result appears in Listing 7.6.

Listing 7.6 A before_save callback to create the encrypted_password attribute.
app/models/user.rb

class User < ActiveRecord::Base

validates :password, :presence => true,
:confirmation => true,
:length => { :within => 6..40 }

before_save :encrypt_password

private

def encrypt_password
self.encrypted_password = encrypt (password)
end

def encrypt(string)
string # Only a temporary implementation!
end
end

Here the encrypt_password callback delegates the actual encryption to an encrypt
method; as noted in the comment, this is only a temporary implementation—as currently
constructed, Listing 7.6 simply sets the encrypted to the unencrypted password, which
kind of defeats the purpose. But it’s enough to get our test to pass, and we’ll make the
encrypt method do some actual encryption in Section 7.2.

Before trying to understand the implementation, first note that the encryption meth-
ods appear after the private keyword; inside a Ruby class, all methods defined affer
private are used internally by the object and are not intended for public use.> For an

3. The extra level of indentation is a typographical reminder that we’re in a private section; otherwise, it’s easy
to miss the private keyword and be confused when trying to access a private method that you think is public.
I thought the extra indentation was a stupid convention until I burned an hour on just this problem a couple
years back. Now I add the extra indentation. ..

7.1 Insecure Passwords 249
example, we can look at a User object in the console:

>> user = User.new
>> user.encrypt_password
NoMethodError: Attempt to call private method

Here Ruby raises a NoMethodError exception and issues a warning that the encrypt_-
password method is private.

In the present context, making the encrypt_password and encrypt methods
private isn’t strictly necessary, but it’s a good practice to make them private unless they
are needed for the public interface.*

Now that we understand the private keyword, let’s take another look at the
encrypt_password method:

def encrypt_password
self.encrypted password = encrypt (password)
end

This is a one-line method (the best kind!), but it contains not one but #zwo subtleties.
First, the left-hand side of the statement explicitly assigns the encrypted_password
attribute using the self keyword. (Recall from Section 4.4.2 that inside the class se1f
refers to the object itself, which for the User model is just the user.) The use of self is
required in this context; if we omitted self and wrote

def encrypt_password
encrypted_password = encrypt (password)
end

Ruby would create a local variable called encrypted_password, which isn’t what we
want at all.

4. Ruby has a closely related keyword called protected that differs subtly from private. As far as I can tell,
the only reason to learn the difference is so that you can ace a job interview that asks you “In Ruby, what is
the difference between private and protected?” But do you really want to work at a company that asks you
such a lame interview question? At his keynote at RubyConf in 2008, Dave Thomas (author of Programming
Ruby) suggested eliminating protected from future versions of Ruby, and I agree with the sentiment. Just use
private and you'll be fine.

250 Chapter 7: Modeling and Viewing Users, Part II

Second, the right-hand side of the assignment calls encrypt on password, but
there is no password in sight. In the console, we would access the password attribute
through a user object.

>> user = User.new(:password => "foobar")
>> user.password
=> "foobar"

Inside the User class, the user object is just sel£, and we could write

def encrypt_password
self.encrypted password = encrypt (self.password)
end

in analogy with the console example, just replacing user with self. But the self is
optional, so for brevity we can write simply

def encrypt_password
self.encrypted_password = encrypt (password)
end

as in Listing 7.6 above. (Of course, as we've noted, the self is nor optional when
assigning to an attribute, so we have to write self.encrypted_password in this case.)

7.2 Secure Passwords

With the code from Section 7.1, in principle we are done: although the “encrypted”
password is the same as the unencrypted password, as long as we are willing to store
unencrypted passwords in the database we have the necessary foundation for user login
and authentication.” Our standards in Rails Tutorial are much loftier, though: any web
developer worth his salt should know how to implement a password system with secure
one-way hashing. In this section, we will build on the material from Section 7.1 to
implement just such an industrial-strength password system.

5.1 am ashamed to admit that this is how we implemented passwords in RailsSpace. Consider this section my
penance.

7.2 Secure Passwords 251

7.2.1 A Secure Password Test

As hinted at in Section 7.1.3, all of the machinery for password encryption will be tucked
away in the private regions of the User model, which presents a challenge for testing
it. What we need is some sort of public interface that we can expose to the rest of the
application. One useful aspect of test-driven development is that, by acting as a client
for our application code, the tests motivate us to design a useful interface right from the
start.

Authenticating users involves comparing the encrypted version of a submitted pass-
word to the (encrypted) password of a given user. This means we need to define some
method to perform the comparison, which we’ll call has_password?; this will be our
public interface to the encryption machinery.® The has_password? method will test
whether a user has the same password as one submitted on a sign-in form (to be written
in Chapter 9); a skeleton method for has_password? appears in Listing 7.7.

Listing 7.7 Ahas_password? method for users.
app/models/user.rb

class User < ActiveRecord::Base

before_save :encrypt_password

Return true if the user's password matches the submitted password.
def has_password? (submitted_password)

Compare encrypted_password with the encrypted version of

submitted password.
end

private

end

6. The alert reader may notice that none of what we do in this section requires encryption, but, once we develop
some of the theory of secure passwords and write a basic implementation (Section 7.2.2), the only way for the
has_password? method to work propetly is for all the encryption machinery to work properly as well.

252 Chapter 7: Modeling and Viewing Users, Part II

With this method, we can write tests as in Listing 7.8, which uses the RSpec methods
be true and be false to test that has password? returns true or false in the
proper cases.

Listing 7.8 Tests for the has_password? method.
spec/models/user_spec.rb

describe User

describe "password encryption" do

before(:each) do
@user = User.create! (Gattr)
end

describe "has_password? method" do

it "should be true if the passwords match" do
@user.has_password? (@attr|[:password]) .should be_true
end

it "should be false if the passwords don't match" do
Quser.has_password? ("invalid") .should be_false
end
end
end
end

In Section 7.2.3, we’ll complete the implementation of has_password? (and get
the test to pass in the process). But first we need to learn a little more about secure
passwords.

7.2.2 Some Secure Password Theory

The basic idea of encrypted passwords is simple: rather than storing a raw password in
the database (known as “cleartext”), we store a string generated using a cryptographic
hash function, which is essentially irreversible, so that even an attacker in possession
of the hashed password will be unable to infer the original. To verify that a submitted
password matches the user’s password, we first encrypt the submitted string and then
compare the hashes. Let’s drop into a console session to see how this works:

7.2 Secure Passwords 253

$ rails console

>> require 'digest’

>> def secure_hash (string)

>> Digest: :SHA2.hexdigest (string)

>> end

=> nil

>> password = "secret"

=> "secret"

>> encrypted password = secure_hash (password)

=> "2bb80d537blda3e38bd30361laal855686bdeleacd7162fef6a25fe97bf527a25b"
>> submitted_password = "secret"

=> "secret"

>> encrypted_password == secure_hash (submitted_password)
=> true

Here we've defined a function called secure_hash that uses a cryptographic hash
function called SHA?2, part of the SHA family of hash functions, which we include into
Ruby through the digest library.” It’s not important to know exactly how these hash
functions work; for our purposes what’s important is that they are one-way: there is no
computationally tractable way to discover that

2bb80d537blda3e38bd3036laal855686bdeleacd7162fef6a25fe97bf527a25b

is the SHA2 hash of the string "secret™.

If you think about it, though, we still have a problem: if an attacker ever got hold
of the hashed passwords, he would still have a chance at discovering the originals. For
example, he could guess that we used SHA2, and so write a program to compare a given
hash to the hashed values of potential passwords:

>> hash = "2bb80d537blda3e38bd3036laa855686bdeleacd7162fef6a25fe97bf527a25b"
>> secure_hash("secede") == hash

=> false
>> secure_hash("second") == hash
=> false
>> secure_hash("secret") == hash
=> true

7. In my setup, the require ’digest’ line is unnecessary, but several readers have reported getting a
NameError exception if they don’t include it explicitly. It does no harm in any case, so I've included the
explicit require just to be safe.

254 Chapter 7: Modeling and Viewing Users, Part II

So our attacker has a match—bad news for any users with password "secret. This
technique is known as a rainbow attack.

To foil a potential rainbow attack, we can use a sa/t, which is a different unique string
for each user.® One common way to (nearly) ensure uniqueness is to hash the current
time (in UTC to be time-zone—independent) along with the password, so that two users
will have the same salt only if they are created at exactly the same time and have the
same password. Let’s see how this works using the secure_hash function defined in
the console above:

>> Time.now.utc

=> Fri Jan 29 18:11:27 UTC 2010

>> password = "secret"

=> "secret"

>> salt = secure_hash("#{Time.now.utc}--#{password}")

=> "dla3eb8c9aab32ecl9cfda810d2ab351873b5dcadel6e7£5703¢c1932113314c8"
>> encrypted_password = secure_hash("#{salt}--#{password}")

=> "69a98a49b7£fd103058639be84£fb88c19c998c8ad3639cfc5deb4d58018561c847"

In the last line, we’ve hashed the salt with the password, yielding an encrypted password
that is virtually impossible to crack. (For clarity, arguments to hashing functions are
often separated with --.)

7.2.3 Implementing has_password?

Having finished with the theory, we’re now ready for the implementation. Let’s look
ahead a little to see where we’re going. Each user object knows its own encrypted pass-
word, so to check for a match with a submitted password we can define has_password?
as follows:

def has_password? (submitted_password)
encrypted_password == encrypt (submitted_password)
end

As long as we encrypt the submitted password using the same salt used to encrypt
the original password, this function will be true if and only if the submitted password
matches.

8. Technically, rainbow attacks could still succeed, but using a salted hash makes them computationally
unfeasible.

7.2 Secure Passwords 255

Since comparing a user password with a submitted password will involve encrypting
the submitted password with the salt, we need to store the salt somewhere, so the first
step is to add a salt column to the users table:

$ rails generate migration add_salt_to_users salt:string

Aswith the encrypted_password migration (Section 7.1.2), this migration has a name
that ends in _to_users and passes a second argument containing the attribute name
and type, so Rails automatically constructs the right migration (Listing 7.9).

Listing 7.9 The migration to add a salt column to the users table.
db/migrate/<timestamp>_add_salt_to_users.rb

class AddSaltToUsers < ActiveRecord::Migration
def self.up
add_column :users, :salt, :string
end

def self.down
remove_column :users, :salt
end
end

Then we migrate the database and prepare the test database as usual:

$ rake db:migrate
$ rake db:test:prepare

The result is a database with the data model shown in Figure 7.3.

Finally, we're ready for the full implementation. When last we saw the encrypt
function (Listing 7.6), it did nothing, simply returning the string in its argument. With
the ideas from Section 7.2.2, we're now in a position to use a secure hash instead
(Listing 7.10).°

9. As noted in Section 7.2.2, the explicit require ‘digest” line is unnecessary on some systems, but it does
no harm to include it.

256 Chapter 7: Modeling and Viewing Users, Part II

users

id integer
name string
email string
encrypted_password string

salt string
created_at datetime
updated_at datetime

Figure 7.3 The User model with an added salt.

Listing 7.10 The has_password? method with secure encryption.
app/models/user.rb

require 'digest'
class User < ActiveRecord::Base

before_save :encrypt_password

def has_password? (submitted_password)
encrypted_password == encrypt (submitted_password)
end

private

def encrypt_password
self.salt = make_salt if new_record?
self.encrypted_password = encrypt (password)
end

def encrypt(string)
secure_hash ("#{salt}--#{string}")

end

def make_salt
secure_hash ("#{Time.now.utc}--#{password}")

end

def secure_hash(string)
Digest: :SHA2 .hexdigest (string)
end
end

7.2 Secure Passwords 257

This code contains the same two subtleties mentioned in Section 7.1.3, namely, the
assignment to an Active Record attribute in the line

self.salt = make_salt if new_record?

and the omission of the se1lf keyword in the encrypt method:

def encrypt(string)
secure_hash ("#{salt}--#{string}")
end

Since we're inside the User class, Ruby knows that salt refers to the user’s salt attribute.

I¢’s also important to note the use of Active Record’s new_record? boolean method,
which returns true if the object has not yet been saved to the database. Since the salt
is a unique identifier for each user, we don’t want it to change every time the user is
updated (as in Section 10.1), and by including new_record? we ensure that the salt is
only created once, when the user is first created.'® (This subtlety doesn’t matter now, but
it will when we implement a “remember me” signin feature in Section 9.3.2.)

At this point, the tests from Listing 7.8 should pass:

$ rspec spec/models/user_spec.rb -e "should be true if the passwords match"
1 example, 0 failures
$ rspec spec/models/user_spec.rb \

> -e "should be false if the passwords don't match"

1 example, 0 failures

We can also run all the examples in a particular describe block, but we do have to
be careful to escape any special regular expression characters—in this case, the question

10. In past versions of Rails, we could have used the after_validation_before_create callback to set the
salt, but it has been eliminated in Rails 3. Meanwhile, we can’t use the before_create callback because it
executes affer the before_save callback, and the before_save callback needs the salt.

258 Chapter 7: Modeling and Viewing Users, Part II
mark ? in "has_ password? method":

$ rspec spec/models/user_spec.rb -e "has_password\? method"
Run filtered using {:full_description=>/(?-mix:has_password\? method) /}

2 examples, 0 failures

The backslash before the question mark ensures that RSpec’s regular expression matcher
interprets the string correctly, thereby running the tests associated with the given
describe block.

7.2.4 An Authenticate Method

Having a has_password? method for each user is nice, but by itself it isn’t very useful.
We'll end our discussion of passwords by using has_password? to write a method to
authenticate a user based on an email/password combination. In Chapter 9, we’ll use
this authenticate method when signing users in to our site.

We can get a hint of how this will work by using the console. First, we'll create a
user, and then retrieve that user by email address to verify that it has a given password:!!

S rails console --sandbox

>> User.create(:name => "Michael Hartl", :email => "mhartl@example.com",
?> :password => "foobar", :password_confirmation => "foobar")
>> user = User.find_ by email ("mhartl@example.com")

>> user.has_password? ("foobar")

=> true

Using these ideas, let’s write a method that will return an authenticated user on pass-
word match, and nil otherwise. We should be able to use the resulting authenticate
class method as follows:

User.authenticate(email, submitted_password)

11. Recall from Box 6.2 that the index on the email column ensures that this retrieval is efficient.

7.2 Secure Passwords 259

We start with the tests, which we’ll use to specify the behavior we expect from
User.authenticate. There are three cases to check: authenticate (1) should return
nil when the email/password combination is invalid or (2) when no user exists with the
given email address, and (3) should return the user object itself on success. With this

information, we can write the tests for authenticate as in Listing 7.11.

Listing 7.11 Tests for the User .authenticate method.
spec/models/user_spec.rb

describe User

describe "password encryption" do

describe "authenticate method" do

it "should return nil on email/password mismatch" do
wrong_password_user = User.authenticate(@attr[:email], "wrongpass")
wrong_password_user.should be_nil

end

it "should return nil for an email address with no user" do
nonexistent_user = User.authenticate("bar@foo.com", @attr[:password])
nonexistent_user.should be_nil

end

it "should return the user on email/password match" do
matching user = User.authenticate(@attr[:email], @attr[:password])
matching_user.should == Quser
end
end
end
end

Now we’re ready for the implementation, which will get our tests to pass and show
how to define a class method as a bonus. We've mentioned class methods several times
before, most recently in Section 6.1.1; a class method is simply a method attached to a
class, rather than an instance of that class. For example, new, £ind, and £ind_by_email
are all class methods on the User class. Outside of the class, they are invoked using the
class name, as in User. £ind, but inside the class we can omit the class name.

260 Chapter 7: Modeling and Viewing Users, Part II

Box 7.1 What is sel£f?

We've talked about how self is “‘the object itself”, but exactly what that means
depends on context. Inside of an ordinary method, self refers to an instance of the
class, that is, the object itself. For example, in Listing 7.10, self is a user:

def encrypt_password
self.salt = make_salt if new_record?
self.encrypted_password = encrypt (password)
end

Inside the encrypt_password method, self is a user object, so sel£f.salt is the
same as user.salt outside the method:

$ rails console

>> user = User.first

>> user.salt

=> "d3b9af261c502947fbf32£78cb8179blbeb2eabact05945lefeed04328b2£537"

On the other hand, Listing 7.12 shows the definition of authenticate, which
uses self to define a class method; here, self is the User class itself:

def self.authenticate(email, submitted_password)

end

Because it is defined on the User class, authenticate gets invoked directly on
User:

>> user = User.authenticate('example@railstutorial.org', 'foobar')
>> user.name
=> "Example User"

It'sworth noting two alternative ways of defining an authenticate class method
equivalent to the one shown in Listing 7.12. First, we could indicate the User class
explicitly by name:

def User.authenticate(email, submitted_password)

end

(Some people might find this syntax clearer, but it’s not as idiomatically correct.) Sec-
ond, we could use the following code, which quite frankly melts my brain:

7.2 Secure Passwords 261

class << self
def authenticate(email, submitted_password)

end
end

The weird class << self starts a block in which all new methods are automatically
class methods. | find this syntax rather confusing, but it’s possible you’ll encounter it
in others’ code, so it’s worth knowing what it does. (I recommend The Well-Grounded
Rubyist by David A. Black if you want to dig into Ruby details like this one.)

The way to define a class method is to use the se1£ keyword in the method definition.
(This sel£ is not the same as the sel£ shown in Listing 7.10; see Box 7.1.) Listing 7.12
shows this construction in the context of the authenticate method. Note the call to
find by email, in which we omit the explicit User class name since this method is

already inside the User class.

Listing 7.12 The User.authenticate method.
app/models/user.rb

class User < ActiveRecord::Base

def has_password? (submitted_password)
encrypted_password == encrypt (submitted_password)
end

def self.authenticate(email, submitted_password)

user = find_by_email (email)

return nil if user.nil?

return user if user.has_password? (submitted_password)
end

private

end

There are several equivalent ways to write the authenticate method, but I find the

implementation above the clearest. It handles two cases (invalid email and a successful

262 Chapter 7: Modeling and Viewing Users, Part II

match) with explicit return keywords, and handles the third case (password mismatch)
implicitly, since in that case we reach the end of the method, which automatically returns
nil. See Section 7.5 for some of the other possible ways to implement this method.

7.3 Better User Views

Now that User model is effectively complete,12 we are in a position to add a sample
user to the development database and make a show page to show some of that user’s
information. Along the way, we’ll add some tests to the Users controller spec started in
Section 5.3.1.

Before continuing, it’s helpful to see where we left off by recalling what the Users
controller spec looks like right now (Listing 7.13). Our tests for the user show page will
follow this example, but we’ll find that, unlike the tests for the new action, the tests for
the show action will require the use of an instance of the User model. We’ll meet this
challenge using a technique called factories.

Listing 7.13 The current Users controller spec.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

render_views
describe "GET 'new'" do
it "should be successful" do
get 'new’
response.should be_success

end

it "should have the right title" do

get 'new’
response.should have_selector("title", :content => "Sign up")
end
end
end

12. We'll plan to add a couple more attributes (one to identify administrative users and one to allow a “remember
me” feature), but they are not strictly necessary. All the essential user attributes have now been defined.

7.3 Better User Views 263

7.3.1 Testing the User Show Page (With Factories)

Tests for the Users controller will need instances of User model objects, preferably with
pre-defined values. For example, as seen in Listing 7.14, the Users controller show action
needs an instance of the User class, so the tests for this action will require that we create
an @user variable somehow. We'll accomplish this goal with a user factory, which is a
convenient way to define a user object and insert it into our test database.'?

Listing 7.14 The user show action from Listing 6.25.
app/controllers/users_controller.rb

class UsersController < ApplicationController
def show

@user = User.find(params|[:1d])
end

end

1,'* a Ruby gem produced by

We'll be using the factories generated by Factory Gir
the good people at thoughtbot. As with other Ruby gems, we can install it by adding a
line to the Gemfile used by Bundler (Listing 7.15). (Since Factory Girl is only needed

in the tests, we've included it in the :test group.)

Listing 7.15 Adding Factory Girl to the Gemfile.

source 'http://rubygems.org’

group :test do

gem 'factory_girl_rails', '1.0°'
end

13. Many experienced Rails programmers find that this factory approach is much more flexible than fixsures,
which Rails uses by default but can be brittle and difficult to maintain.

14. Presumably “Factory Girl” is a reference to the movie of the same name.

http://rubygems.org

264 Chapter 7: Modeling and Viewing Users, Part II
Then install as usual:

$ bundle install

Now we're ready to create the file spec/factories.rb and define a User factory,
as shown in Listing 7.16. By putting the factories.rb file in the spec/ directory, we
arrange for RSpec to load our factories automatically whenever the tests run.

Listing 7.16 A factory to simulate User model objects.
spec/factories.rb

By using the symbol ':user', we get Factory Girl to simulate the User model.
Factory.define :user do |user|

user.name "Michael Hartl"
user.email "mhartl@example.com"
user.password "foobar"

user.password_confirmation "foobar"

end

With the definition in Listing 7.16, we can create a User factory in the tests like this:

@user = Factory(:user)

As noted in the comment in the first line of Listing 7.16, by using the symbol :user we
ensure that Factory Girl will guess that we want to use the User model, so in this case
@user will simulate an instance of User.

To use our new User factory in the Users controller spec, we'll create an @user
variable in a before (:each) block and then get the show page and verify success (just
as we did with the new page in Listing 7.13), while also verifying that the show action
pulls the correct user out of the database. The result appears in Listing 7.17. (If you're
using Spork, you might have to restart it to get these tests to pass.)

Listing 7.17 A test for getting the user show page, with a user factory.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do
render_views

7.3 Better User Views 265

describe "GET 'show'" do

before(:each) do
@user = Factory(:user)
end

it "should be successful" do
get :show, :id => @user
response.should be_success
end

it "should find the right user" do
get :show, :id => @user
assigns (:user) .should == Quser
end
end

end

Apart from the first use of a factory, the real novelty here is the use of a
assigns (:user), whichisa facility provided by RSpec (via the underlying Test : :Unit
library). The assigns method takes in a symbol argument and returns the value of the
corresponding instance variable in the controller action. In other words, in Listing 7.17
the code

assigns (:user)

returns the value of the instance variable

@Quser

in the show action of the Users controller. The test

assigns (:user) .should == Quser

then verifies that the variable retrieved from the database in the action corresponds
to the @user instance created by Factory Girl. It’s worth noting that not all Rails

266 Chapter 7: Modeling and Viewing Users, Part II

programmers use assigns in this context, preferring instead to use a technique called
stubbing (Box 7.2).

Box 7.2 To stub! or not to stub!.

The code in Listing 7.17 relies on the User.£ind method in the controller action
to retrieve the right user from the test database. A second way to achieve this same
result is using a technique called stubbing, using RSpec’s stub! method:

before(:each)
@user = Factory(:user)
User.stub! (:find, @user.id).and_return (@Quser)

end

This code ensures that any call to User . £ind with the given id will return @user.
Since this is just what we have in the application code (Listing 7.14), the stub will
cause RSpec to intercept the call to User.£ind and, instead of hitting the database,
return @user instead.

Many Rails programmers, especially RSpec users, prefer this stubbing approach
because it separates the controller tests from the model layer. Indeed, the Rails 2.3
version of this book uses stubs, along with the closely related technique of message
expectations. After gaining more experience with stubs and expectations, and espe-
cially after fielding lots of questions from readers of the Rails 2.3 Tutorial confused by
these issues, | have concluded that stubbing and related techniques are not worth the
trouble.

Figuring out exactly when to stub things out is difficult, and message expectations
are incredibly subtle and error-prone (see, e.g., Box 8.1 in the Rails 2.3 Tutorial book).
To the common objection, “But now the controller tests hit the test database!”, |
now find myself saying: ““So what?”’ In my experience it has never mattered. | see no
compelling reason not to hit the model layer in the controller tests, especially when
it leads to much simpler tests. If you are interested in learning stubbing and message
expectation techniques, | recommend reading the Ruby on Rails 2.3 Tutorial book.
Otherwise, | suggest not worrying about enforcing a full separation of the model and
controller layers in Rails tests. Although the controller tests in the rest of this book will
hit the test database, at a conceptual level it will always be clear which part of MVC is
being tested.

By the way, in principle the tests should run faster when the controllers don’t hit
the database, and for the full Rails Tutorial sample application test suite they do—by
around two-tenths of a second.

There are two other details in Listing 7.17 worth noting. First, in the call to get,
the test uses the symbol : show instead of the string * show’, which is different from the
convention in the other tests (for example, in Listing 3.10 we wrote get “home’). Both

7.3 Better User Views 267

get :show

and

get 'show'

do the same thing, but when testing the canonical REST actions (Table 6.2) I prefer to
use symbols, which for some reason feel more natural in this context.!> Second, note
that the value of the hash key :id, instead of being the user’s id attribute @user.idq, is
the user object itself:

get :show, :id => @user
We could use the code
get :show, :1d => @Quser.id

to accomplish the same thing, but in this context Rails automatically converts the user
object to the corresponding id.!® Using the more succinct construction

get :show, :id => @user

is a very common Rails idiom.
Because of the code we added in Listing 6.25, the test in this section already passes.
If you’re feeling paranoid, you can comment out the line

@Quser = User.find(params|[:id])

15. I used get new’ in Listing 5.24 and subsequent tests for the new action because at that point we had yet
to encounter the idea of standard REST actions. I'll switch to get :new in future tests.

16. It does this by calling the to_param method on the @user variable.

268 Chapter 7: Modeling and Viewing Users, Part II

and verify that the test fails, then uncomment it to get it to pass. (We went through this
same process once before, in Section 6.2.1.)

7.3.2 A Name and a Gravatar

In this section, we’ll improve the look of the user show page by adding a heading with
the user’s name and profile image. This is one of those situations where I can go either
way on test-driven development, and often when making views I'll experiment with
the HTML before bothering with tests. Let’s stick with the TDD theme for now, and
test for a top-level heading (h1 tag) containing the user’s name and an img tag of class
gravatar. (We'll talk momentarily about what this second part means.)

To view a working user show page in a browser, we’ll need to create a sample user
in the development database. To do this, first reset the database with rake db:reset,
which will clear out any old sample users from previous sessions, and then start the
console (7ot in a sandbox this time) and create the user:

$ rake db:reset

S rails console

>> User.create(:name => "Example User", :email => "user@example.com",

?> :password => "foobar", :password_confirmation => "foobar")

The tests in this section are similar to the tests for the new page seen in Listing 5.26.
In particular, we use the have_selector method to check the title and the content of
the h1 tag, as seen in Listing 7.18.

Listing 7.18 Tests for the user show page.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

render_views

describe "GET 'show'" do

it "should have the right title" do

get :show, :1id => @Quser

response.should have_selector("title", :content => @Quser.name)
end

7.3 Better User Views 269

it "should include the user's name" do

get :show, :id => @Quser

response.should have_selector ("hl", :content => @Quser.name)
end

it "should have a profile image" do
get :show, :id => @Quser
response.should have_selector ("hl>img", :class => "gravatar")
end
end

end

Here RSpec’s have_selector method verifies the presence of a title and hi tags
containing the user’s name. The third example introduces a new element through the
code h1>img, which makes sure that the img tag is 7zside the h1 tag.17 In addition, we
see that have_selector can take a :class option to test the CSS class of the element
in question.

We can get the first test to pass by setting the @title variable for use in the title
helper (Section 4.1.1), in this case setting it to the user’s name (Listing 7.19).

Listing 7.19 A title for the user show page.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@Quser = User.find(params[:id])
@title = Quser.name

end

end

17. It’s not necessarily always a good idea to make HTML tests this specific, since we don’t always want to
constrain the HTML layout this tightly. Feel free to experiment and find the right level of detail for your
projects and tastes.

270 Chapter 7: Modeling and Viewing Users, Part II

This code introduces a potential problem: a user could enter a name with malicious
code—called a cross-site scripting attack—which would be injected into our application
by the title helper defined in Listing 4.2. Before Rails 3, the solution was to escape
potentially problematic code using the h method (short for html_escape), but as of
Rails 3.0 all Embedded Ruby text is escaped by default.’® For example, if a user tried
to inject a malicious JavaScript program by using <script> in his name, the auto-
matic HTML escaping would convert it to &1t; scriptagt;, rendering it completely
harmless.

Now for the other tests. Creating an h1 with the (auto-escaped) user name is easy
(Listing 7.20).

Listing 7.20 The user show view with the user’s name.
app/views/users/show.html.erb

<hl>
<%= @Quser.name %>
</hl1l>

Getting the img test to pass is trickier. The first step is to install the gra-
vatar_image_tag gem to handle each user’s Gravatar,' which isa “globally recognized
avatar”.?’ As usual, we will include the gem dependency in the Gemgile (Listing 7.21).

Listing 7.21 Adding a Gravatar gem to the Gemfile.

source 'http://rubygems.org'

gem 'rails', '3.0.0°'
gem 'sglite3-ruby', '1.2.5', :require => 'sglite3'
gem 'gravatar_image_tag', '0.1.0°'

18. Instead, if you want unescaped text you have to use the raw method, as in <%= raw etitle %>.

19. Gravatar was originally created by Tom Preston-Werner, cofounder of GitHub, and was acquired and scaled
by Automattic (best known as the makers of WordPress).

20. In Hinduism, an avatar is the manifestation of a deity in human or animal form. By extension, the term

avatar is commonly used to mean some kind of personal representation, especially in a virtual environment.
But you've seen the movie by now, so you already knew this.

http://rubygems.org

7.3 Better User Views 271
Then install it with bundle:

$ bundle install

Gravatars are a convenient way to include user profile images without going through
the trouble of managing image upload, cropping, and storage.?! Each Gravatar is asso-
ciated with an email address, so the Gravatar gem comes with a helper method called
gravatar_image_tag that takes an email address as an argument:

<%= gravatar_image_tag 'example@railstutorial.org' %>

For the moment, we’ll use this directly in our user show view, as seen in Listing 7.22.
(We'll make a helper method for it in a moment.) The result appears in Figure 7.4, which
shows our example user with the default Gravatar image.

Listing 7.22 The user show view with name and Gravatar.
app/views/users/show.html.erb

<hl>
<%= gravatar_image_tag @Quser.email %>
<%= @Quser.name %>

</h1l>

This Gravatar business might seem like magic, so let’s fire up the console to get a
little more insight into what’s going on:

$ rails console
>> user = User.first
>> user.update_attributes(:email => "example@railstutorial.org",

?> :password => "foobar",
?> :password_confirmation => "foobar")
=> true

21. If your application does need to handle images or other file uploads, Paperclip is the way to go. Like Factory
Girl, Paperclip is brought to you by thoughtbot. (Though I do know several people there, I have no vested
interest in promoting thoughtbot; they just make good software.)

272 Chapter 7: Modeling and Viewing Users, Part II

ann Ruby on Rails Tutorial Sample App | Example User —
(:j_»_’)- o« JUA L hitp [flocathost 3000 users 1 - LD
Sample Ap

- Done

Figure 7.4 The initial user show page /users/1 with the default Gravatar.

Note that we can pull out the first (and, at this point, only) user in the database with
the handy User.first method. In the update_attributes step we've reassigned
the user’s email address, changing it to example@railstutorial.org. As you can see
from Figure 7.5, this change results in a new Gravatar being displayed: the Rails Tutorial
logo. What's going on is that Gravatar works by associating images with email addresses;
since user@example.com is an invalid email address (the example.com domain is re-
served for examples), there is no Gravatar for that email address. But at my Gravatar
account I've associated the address example@railstutorial.org with the Rails Tu-
torial logo, so when updating the example user with that email address the Gravatar
changes automatically.

A Gravatar Helper
At this point, the Gravatar displays properly, but the final example from Listing 7.18
still doesn’t pass. This is because the "gravatar® class, which we want for styling the

7.3 Better User Views 273

Ruby on Rails Tuterial Sample App | Example User -
") L | hetp / /localhont 3000 /uvers /| W

Sample App

, " Example User

Bap ActiveSupport HashWithindifferentAccess

e e

Figure 7.5 The user show page /users/1 with the Rails Tutorial Gravatar.

Gravatar with CSS, isn’t yet present in the Gravatar’s img tag. We could arrange for the
test to pass by including an option to the gravatar_image_tag method:

<%= gravatar_image_tag @Quser.email, :class => "gravatar" %>

On the other hand, since we expect the Gravatars to appear in multiple places in our
application, it would be repetitive to put the class in everywhere by hand. It would be
better to make a helper method to eliminate this duplication preemptively.

This situation may remind you of the repetition in the site’s base title (“Ruby on
Rails Tutorial Sample App”), which we solved with a title helper in the Application
helper (Listing 4.2). The solution here is similar; since Gravatars are naturally associated
with users, we'll define a gravatar_for method in the Users helper. (The choice to use
the Users helpers instead of the Application helper is just for conceptual convenience;

274 Chapter 7: Modeling and Viewing Users, Part II

Rails makes all helpers available in all views.) The result will be concise view code

like
<%= gravatar_for @Quser %>

The gravatar_for helper should take in a user object and then pass some
default options to the gravatar_image_tag helper. The implementation appears in
Listing 7.23.

Listing 7.23 Defining a gravatar_£for helper method.
app/helpers/users_helper.rb

module UsersHelper

def gravatar_for(user, options = { :size => 50 })
gravatar_image_tag(user.email.downcase, :alt => user.name,
:class => 'gravatar',
:gravatar => options)
end
end

The first argument in the call to gravatar_image_tag passes in the lower-case version

of the user’s email address (using the downcase method).??

Then the first option to
gravatar_image_tag assigns the user’s name to the img tag’s alt attribute (which
gets displayed in devices that can’t render images), while the second option sets the CSS
class of the resulting Gravatar. The third option passes the options hash using the
:gravatar key, which (according to the gravatar_image_tag gem documentation)
is how to set the options for gravatar_image_tag. Note that the function definition
sets a default option®® for the size of the Gravatar** using

option = { :size => 50 }

This sets the default Gravatar size to 50x50, while also allowing us to override the default
size using code like

22. Thanks to the anonymous reader who noted that the Gravatar plugin is case-sensitive in this context.
23. There’s actually a way to reset the default size in a configuration file, but I find this way clearer.

24. Gravatars are square, so a single parameter determines their size uniquely.

7.3 Better User Views 275

Ruby on Rails Tutorial Sample Ap | Example User r-ﬂ

hp | flocalhost 3000 /users /|

-

Sample App
?\ Example User

tmap ACtiveSupport MashWithIndifferentAccess
sction: show

controller. users

1a: *1°

Figure 7.6 The user show page with gravatar_for.

<%= gravatar_for @Quser, :size => 30 %>

If we now update the user show template with the code in Listing 7.24, the user
show page appears as in Figure 7.6. And since the gravatar_for helper assigns the img
tag the class "gravatar", the tests from Listing 7.18 should now pass.

Listing 7.24 Updating the user show template to use gravatar_for.
app/views/users/show.html.erb

<hl>
<%= gravatar_for @Quser %>

<%= @Quser.name %>
</hl>

276 Chapter 7: Modeling and Viewing Users, Part II

7.3.3 A User Sidebar

Even though our tests are now passing, and the user show page is much improved, it’s
still nice to polish it up just a bit more. In Listing 7.25, we have a table tag with one
table row (tr) and two table data cells (¢a).?

Listing 7.25 Adding a sidebar to the user show view.
app/views/users/show.html.erb

<table class="profile" summary="Profile information">

<tr>
<td class="main">
<hl>
<%= gravatar_for @user %>
<%= @Quser.name %>
</hl>
</tda>

<td class="sidebar round">
Name <%= @Quser.name 3%>

URL <%= link to user_path(Quser), @Guser %>
</td>
</tr>
</table>

Here we've used an HTML break tag
 to puta break between the user’s name and
URL. Also note the use of user_path to make a clickable link so that users can easily
share their profile URLs. This is only the first of many named routes (Section 5.2.2)
associated with the User resource (Listing 6.26); we'll see many more in the next few

chapters. The code

user_path (Quser)

returns the path to the user, in this case /users/1. The related code

user_url (@Guser)

25. If anyone gives you grief for using, horror of horrors, tables for layout, have them point their Firebug inspector
at Twitter’s profile sidebar and tell you what they see. In fact, you'll find that, while “semantic markup” using
divs and spans is increasingly common, virtually all sites resort to tables for layout on occasion. In the present
case, getting the vertical alignment just right is much easier with tables.

7.3 Better User Views 277

Table 7.1 Named routes provided by the users resource in Listing 6.26

Named route Path

users_path /users

user_path(@user) /users/1

new_user_ path /users/new

edit_user_path(@user) /users/1l/edit

users_url http://localhost:3000/users

user url (@user) http://localhost:3000/users/1
new_user_url http://localhost:3000/users/new
edit_user_url (@user) http://localhost:3000/users/1/edit

just returns the entire URL, http://localhost:3000/users/1. (Compare to the
routes created in Section 5.2.2.) Both are examples of the named routes created by the
users resource in Listing 6.26; a list of all the named routes appears in Table 7.1.

Note that in

<%= link_to user_path(@Quser), @user %>

user_path(@user) is the link zexz, while the address is just @user. In the context of a
link_to, Rails converts @user to the appropriate URL; in other words, the code above

is equivalent to the code

<%= link_to user_path(@Quser), user_path(@user) %>

Either way works fine, but, as in the :id => @user idiom from Listing 7.17, using just
@user is a common Rails convention. In both cases, the Embedded Ruby produces the
HTML

/users/1

With the HTML elements and CSS classes in place, we can style the show page with
the CSS shown in Listing 7.26. The resulting page is shown in Figure 7.7.

278 Chapter 7: Modeling and Viewing Users, Part I

- 2:L — Bbyontels te oo | Crampe =
hittp. | flocalbhost 3000 users 1

Ruby on Rails Tutorial

Sample App

7 Example User

« 'map HashWithindifferentAccess
actien. shew
e “1°

controller. users

Figure 7.7 The user show page /users/1 with a sidebar and CSS.

Listing 7.26 CSS for styling the user show page, including the sidebar.
public/stylesheets/custom.css

/* User show page */

table.profile {
width: 100%;
margin-bottom: 0;

td.main {
width: 70%;
padding: lem;

7.4 Conclusion 279

td.sidebar {
width: 30%;
padding: lem;
vertical-align: top;
background: #ffc;

.profile img.gravatar {
border: 1px solid #999;
margin-bottom: -15px;

7.4 Conclusion

In this chapter, we’ve effectively finished the User model, so we’re now fully prepared to
sign up new users and to let them sign in securely with an email/password combination.
Moreover, we have a nice first cut of the user profile page, so after signing in users will

have a place to go.

7.4.1 Git Commit

Before moving on, we should close the Git loop opened in the introduction to Chapter 6
by making a final commit to the modeling-users branch and then merging into
master.’® First, verify that we are on the modeling-users branch:

$ git branch
master

* modeling-users

As noted in Section 1.3.5, the asterisk here identifies the present branch, so we are indeed
ready to commit and merge:*’

$ git add .
$ git commit -am "User model with passwords, and user show page"
$ git checkout master

$ git merge modeling-users

26. Ordinarily, I recommend making more frequent, smaller commits, but frequent Git commits throughout
the tutorial would be hard to maintain and would break up the flow of the discussion.

27. If you’re not on the right branch, run git checkout modeling-users before proceeding.

280 Chapter 7: Modeling and Viewing Users, Part II

7.4.2 Heroku Deploy

If you’ve deployed your sample application to Heroku, you can push it up at this point:

$ git push heroku

Then migrate the database on the remote server using the heroku command:

$ heroku rake db:migrate

Now if you want to create a sample user on Heroku, you can use the Heroku console:

$ heroku console
>> User.create(:name => "Example User", :email => "user@example.com",

?> :password => "foobar", :password confirmation => "foobar")

7.5 Exercises

1. Copy each of the variants of the authenticate method from Listing 7.27 through
Listing 7.31 into your User model, and verify that they are correct by running your
test suite.

2. The final authenticate example (Listing 7.31) is particularly challenging. Exper-
iment with the console to see if you can understand how it works.

3. How could you get the Gravatar helper gravatar_for to work if our User model
used email_ address instead of email to represent email addresses?

Listing 7.27 The authenticate method with User in place of self.

def User.authenticate(email, submitted_password)

user = find_by_email (email)

return nil if user.nilv?

return user if user.has_password? (submitted_password)
end

7.5 Exercises 281

Listing 7.28 The authenticate method with an explicit third return.

def self.authenticate(email, submitted_password)
user = find_by_email (email)
return nil if user.nil?
return user if user.has_password? (submitted_password)
return nil
end

Listing 7.29 The authenticate method using an i £ statement.

def self.authenticate(email, submitted_password)
user = find_by_email (email)
if user.nilv?
nil
elsif user.has_password? (submitted_password)
user
else
nil
end
end

Listing 7.30 The authenticate method using an if statement and an implicit return.

def self.authenticate(email, submitted_password)
user = find_by_email (email)
if user.nil?
nil
elsif user.has_password? (submitted_password)
user
end
end

Listing 7.31 The authenticate method using the ternary operator.

def self.authenticate(email, submitted_password)

user = find_by_email (email)

user && user.has_password? (submitted_password) ? user : nil
end

This page intentionally left blank

CHAPTER 8

Sign Up

Now that we have a working User model, it’s time to add an ability few websites can
live with out: letting users sign up for the site—thus fulfilling the promise implicit in
Section 5.3, “User signup: A first step”. We'll use an HTML form to submit user signup
information to our application in Section 8.1, which will then be used to create a new
user and save its attributes to the database in Section 8.3. As usual, we’ll write tests as
we develop, and in Section 8.4 we’ll use RSpec’s support for web navigation syntax to
write succinct and expressive integration tests.

Since we’ll be creating a new user in this chapter, you might want to reset the database
to clear out any users created at the console (e.g., in Section 7.3.2), so that your results
will match those shown in the tutorial. You can do this as follows:

$ rake db:reset

If you’re following along with version control, make a topic branch as usual:

$ git checkout master
$ git checkout -b signing-up

8.1 Signup Form

Recall from Section 5.3.1 that we already have tests for the new users (signup) page, orig-
inally seen in Listing 5.26 and reproduced in Listing 8.1. (As promised in Section 7.3.1,
we've switched from get ‘new’ to get :new because that’s what my fingers want to
type.) In addition, we saw in Figure 5.10 (shown again in Figure 8.1) that this signup

283

284 Chapter 8: Sign Up

hitg | flocalbost 3000/ signup ¥

Ruby on Rails Tutorial Sample App | Sign up "i

n Rails Tutor

IS”é.rane Abp

Users#new

Find me in app/views/users/new. himl ard

Figure 8.1 The current state of the signup page /signup.

page is currently blank: useless for signing up new users. The goal of this section is to start
changing this sad state of affairs by producing the signup form mocked up in Figure 8.2.

Listing 8.1 The tests for the new users page (first seen in Listing 5.26).
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do
render_views

describe "GET 'new'" do

it "should be successful" do
get :new
response.should be_success

8.1 Signup Form 285

end

it "should have the right title" do

get :new
response.should have_selector("title", :content => "Sign up")
end
end
end

Sign up

I |

Email

Password
[|

Confirmation

I |

Figure 8.2 A mockup of the user signup page.

286 Chapter 8: Sign Up

8.1.1 Using form_for

The HTML element needed for submitting information to a remote website is a form,
which suggests a good first step toward registering users is to make a form to accept
their signup information. We can accomplish this in Rails with the form_for helper
method; the result appears in Listing 8.2. (Readers familiar with Rails 2.x should note
that form_for now uses the “percent-equals” ERb syntax for inserting content; that
is, where Rails 2.x used <% form_ for ... %>, Rails 3 uses <%= form_for ... %>

instead.)

Listing 8.2 A form to sign up new users.
app/views/users/new.html.erb

<hl>Sign up</hl>

<%= form_for (@user) do |f| %>
<div class="field">
<%= f.label :name $%>

<%= f.text_field :name %>
</div>
<div class="field">
<%= f.label :email $>

<%= f.text_field :email %>
</div>
<div class="field">
<%= f.label :password $%>

<%= f.password_field :password %>
</div>
<div class="field">
<%= f.label :password_confirmation, "Confirmation" $%>

<%= f.password_field :password_confirmation %>
</div>
<div class="actions">
<%= f.submit "Sign up" %>
</div>
<% end %>

Let’s break this down into pieces. The presence of the do keyword indicates that
form_for takes a block (Section 4.3.2), which has one variable, which we’ve called
£ for “form”. Inside of the form_for helper, £ is an object that represents a form;
as is usually the case with Rails helpers, we don’t need to know any details about the
implementation, but what we do need to know is what the £ object does: when called
with a method corresponding to an HTML form element—such as a text field, radio

8.1 Signup Form 287

button, or password field—it returns code for that element specifically designed to set
an attribute of the @user object. In other words,

<div class="field">
<%= f.label :name $%>

<%= f.text_field :name %>
</div>

creates the HTML needed to make a labeled text field element appropriate for setting
the name attribute of a User model.

To see this in action, we need to drill down and look at the actual HTML produced
by this form, but here we have a problem: the page currently breaks, because we have
not set the @user variable—like all undefined instance variables (Section 4.2.3), @user
is currently nil. Appropriately, if you run your test suite at this point, you’'ll see that
the signup page tests fail. To get them to pass and get our form to render, we must
define an @user variable in the controller action corresponding to new.html.erb, i.c.,
the new action in the Users controller. The form_for helper expects @user to be a
User object, and since we're creating a new user we simply use User.new, as seen in
Listing 8.3.

Listing 8.3 Adding an @user variable to the new action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def new
@user = User.new
@title = "Sign up"
end
end

With the @user variable so defined, the tests should be passing again,! and now the
form (with the tiny bit of styling from Listing 8.4) appears as in Figure 8.3.

1. If you get an error like views/users/new.html.erb_spec.rb fails, remove those accursed view specs

with § rm -rf spec/views.

288 Chapter 8: Sign Up

ann Ruby on Rails Tutarial Sample App | Sign up =
Ob_-@o T hitp / locainost 3000/ signup W -‘

Samplwe App

Sign up

Name

'mapinashithingi fferentAccess
action: néw

contraller: users

Figure 8.3 The signup form /signup for new users.

Listing 8.4 A wafer-thin amount of CSS for the signup form.
public/stylesheets/custom.css

div.field, div.actions {
margin-bottom: 10px;
}

8.1.2 The Form HTML

As indicated by Figure 8.3, the signup page now renders properly, indicating that the
form_for code in Listing 8.2 is producing valid HTML. If you look at the HTML
for the generated form (using either Firebug or the “view page source” feature of your

8.1 Signup Form 289

browser), you should see markup as in Listing 8.5. Although many of the details are
irrelevant for our purposes, let’s take a moment to highlight the most important parts
of its structure.

Listing 8.5 The HTML for the form in Figure 8.3.

<form action="/users" class="new_user" id="new_user" method="post">

<div style="margin:0;padding:0;display:inline">

<input name="authenticity_token" type="hidden"
value="rB82sI7Qw5J9J1UMILG/VQL411vH5putR+JwlxLScMQ=" />

</div>

<div class="field">

<label for="user_name">Name</label>

<input id="user_name" name="user [name]" size="30" type="text" />
</div>

<div class="field">
<label for="user_email">Email</label>

<input id="user_email" name="user[email]" size="30" type="text" />
</div>
<div class="field">
<label for="user_password">Password</label>

<input id="user_password" name="user [password]" size="30" type="password" />
</div>

<div class="field">
<label for="user_password_confirmation">Confirmation</label>

<input id="user_password_confirmation" name="user [password_confirmation]"
size="30" type="password" />
</div>
<div class="actions">
<input id="user_submit" name="commit" type="submit" value="Sign up" />
</div>
</form>

We'll start with the internal structure. Comparing Listing 8.2 with Listing 8.5, we
see that the Embedded Ruby

<div class="field">
<%= f.label :name $%>

<%= f.text_field :name %>
</div>

290 Chapter 8: Sign Up

produces the HTML

<div class="field">
<label for="user_name">Name</label>

<input id="user_name" name="user [name]" size="30" type="text" />
</div>

and

<div class="field">
<%= f.label :password $%>

<%= f.password_field :password %>
</div>

produces the HTML

<div class="field">
<label for="user_password">Password</label>

<input id="user_password" name="user [password]" size="30"
</div>

type="password" />

As seen in Figure 8.4, text fields (type="text") simply display their contents, whereas

password fields (type="password") obscure the input for security purposes, as seen in
Figure 8.4.

As we'll see in Section 8.3, the key to creating a user is the special name attribute in
each input:

<input id="user_name" name="user [name]" - - - />

<input id="user_password" name="user [password]" - - - />

These name values allow Rails to construct an initialization hash (via the params variable

first seen in Section 6.3.2) for creating users using the values entered by the user, as we’ll
see in Section 8.2.

8.1 Signup Form 291

hitg | flocalhost 3000/ signup o

Ruby on Rails Tutorial Sample App | Sign up ri‘

Sualmp.l.e Ap.p

Sign up
Name
M hae ! Hart!

Email

mRMTED s Al Com

Password

Confirmation

map:MashiithingifferentAccess

action. new

contraller: users

Figure 8.4 A filled-in form, showing the difference between text and password fields.

The second important element is the form tag itself. Rails creates the form tag using
the @user object: because every Ruby object knows its own class (Section 4.4.1), Rails
figures out that @user is of class User; moreover, since @user is a zew user, Rails knows
to construct a form with the post method, which is the proper verb for creating a new
object (Box 3.1):

<form action="/users" class="new_user" id="new_user" method="post">

Here the class and id attributes are largely irrelevant; what's important is action=-
" /users" and method="post". Together, these constitute instructions to issue an
HTML posT request to the /users URL. We'll see in the next two sections what effects
this has.

292 Chapter 8: Sign Up

>

Finally, note the rather obscure code for the “authenticity token”:

<div style="margin:0;padding:0;display:inline">

<input name="authenticity_token" type="hidden"
value="rB82sI7Qw5J9J1UMILG/VQL411vHS5putR+JwlxLScMQ=" />

</div>

Here Rails uses a special unique value to thwart a particular kind of cross-site scripting
attack called a forgery; see the Stack Overflow entry on the Rails authenticity token if
you're interested in the details of how this works and why it’s important. Happily, Rails
takes care of the problem for you, and the input tag is hidden so you don’t really have
to give it a second thought, but it shows up when you view the form source so I wanted
at least to address it.

8.2 Signup Failure

Though we’ve briefly examined the HTML for the form in Figure 8.3 (shown in
Listing 8.5), it’s best understood in the context of signup failure. Just getting a signup
form that accepts an invalid submission and re-renders the signup page (as mocked up
in Figure 8.5) is a significant accomplishment, and it’s the goal of this section.

8.2.1 Testing Failure

Recall from Section 6.3.3 that adding resources :users to the routes.rb file
(Listing 6.26) automatically ensures that our Rails application responds to the RESTful
URLs from Table 6.2. In particular, it ensures that a POST request to /users is handled
by the create action. Our strategy for the create action is to use the form submission
to make a new user object using User.new, try (and fail) to save that user, and then
render the signup page for possible resubmission. Our task is to write tests for this action,
and then add create to the Users controller to get it to pass.
Let’s get started by reviewing the code for the signup form:

<form action="/users" class="new_user" id="new_user" method="post">

As noted in Section 8.1.2, this HTML issues a POST request to the /users URL. In an
analogy with the get method, which issues a GET request inside of tests, we use the post

8.2 Signup Failure 293

Sign up

e Name can't be blank
o Email is invalid
e Password is too short

Name

Email

Password

I |
Confirmation

I |

Figure 8.5 A mockup of the signup failure page.

method to issue a POST request to the create action. As we’ll see shortly, create takes
in a hash corresponding to the object type being created; since this is a test for signup
Jailure, we'll just pass an @attr hash with blank entries, as seen in Listing 8.6. This
is essentially equivalent to visiting the signup page and clicking on the button without
filling in any of the fields.

Listing 8.6 Tests for failed user signup.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

294 Chapter 8: Sign Up

render_views

describe "POST 'create'" do
describe "failure" do

before(:each) do
@attr = { :name => "", :email => "", :password => "",
:password_confirmation => "" }
end

it "should not create a user" do
lambda do
post :create, :user => Gattr
end.should_not change(User, :count)
end

it "should have the right title" do

post :create, :user => Qattr

response.should have_selector("title", :content => "Sign up")
end

it "should render the 'new' page" do
post :create, :user => Qattr
response.should render_template('new')
end
end
end
end

The final two tests are relatively straightforward: we make sure that the title is correct,

and then we check that a failed signup attempt just re-renders the new user page (using

the render_template RSpec method). The first test, on the other hand, is a little tricky.
The purpose of the test

it "should not create a user" do
lambda do
post :create, :user => Qattr
end.should_not change (User, :count)
end

8.2 Signup Failure 295

is to verify that a failed create action doesn’t create a user in the database. To do this,
it introduces two new elements. First, we use the RSpec change method to return the
number of users in the database:

change (User, :count)

This defers to the Active Record count method, which simply returns how many records
of that type are in the database. For example, if you cleared the development database
at the beginning of the chapter, this count should currently be o:

$ rails console
>> User.count
=> 0

The second new idea is to wrap the post :create step in a package using a Ruby
construct called a 1ambda,? which allows us to check that it doesn’t change the user

count:

lambda do
post :create, :user => @attr
end.should_not change (User, :count)

Although this 1ambda may seem strange at this point, there will be more examples in
the tests to come, and the pattern will quickly become clear.

8.2.2 A Working Form

We can get the tests from Section 8.2.1 to pass with the code in Listing 8.7. This listing
includes a second use of the render method, which we first saw in the context of partials
(Section 5.1.3); as you can see, render works in controller actions as well. Note that
we’ve taken this opportunity to introduce an i f-else branching structure, which allows
us to handle the cases of failure and success separately based on the value of @user . save.

2. The name comes from the lambda calculus, a mathematical system for representing functions and their
operations.

296 Chapter 8: Sign Up

Listing 8.7 A create action that can handle signup failure (but not success).
app/controllers/users_controller.rb

class UsersController < ApplicationController

def create
@user = User.new(params]|:user])
if @user.save
Handle a successful save.

else
@title = "Sign up"
render 'new'
end
end

end

The best way to understand how the code in Listing 8.7 works is to submit the form
with some invalid signup data; the results appear in Figure 8.6.

To get a clearer picture of how Rails handles the submission, let’s take a closer look
at the params hash in the debug information at the bottom of Figure 8.6:

--- Imap:ActiveSupport: :HashWithIndifferentAccess
commit: Sign up
authenticity token: rB82sI7Qw5J9J1UMILG/VQL411vHS5puR+JwlxL5cMQ=
action: create
controller: users
user: !map:ActiveSupport::HashWithIndifferentAccess
name: Foo Bar
password_confirmation: dude
password: dude
email: foo@invalid

We saw starting in Section 6.3.2 that the params hash contains information about
each request; in the case of a URL like /users/1, the value of params[:id] is
the id of the corresponding user (1 in this example). In the case of posting to the
signup form, params instead contains a hash of hashes, a construction we first saw
in Section 4.3.3, which introduced the strategically named params variable in a con-
sole session. This debug information above shows that submitting the form results in
a user hash with attributes corresponding to the submitted values, where the keys

8.2 Signup Failure

Ruby on Rails Tutornal Sample App | Sign up

297

bty | flocalhost 3000/ uters

'map:ActIveSupport: HasnWithingifferentAccess

authenticity_token. BI0G5PALoSSvarvi®lotd8llInCinwdnBtonaabKYDg-
wser: 'map ActiveSupport: HashWithlndifferentAccess

name: Foo Bar

email. foo#invalid

password. dude
password_confirmation: dude
commit Sign wp

action: create

contraller: wusers

Figure 8.6 Signup failure with a params hash.

come from the name attributes of the input tags seen in Listing 8.2; for example, the

value of

<input id="user_email" name="user[email]" size="30" type="text" />

with name "user [email]" is precisely the email attribute of the user hash.

Though the hash keys appear as strings in the debug output, internally Rails uses

symbols, so that params[:user] is the hash of user attributes—in fact, exactly the

attributes needed asan argument to User . new, as first seen in Section 4.4.5 and appearing

in Listing 8.7. This means that the line

@Quser = User.new(params]|[:user])

298 Chapter 8: Sign Up
is equivalent to

@Quser = User.new(:name => "Foo Bar", :email => "foo@invalid",

:password => "dude", :password_confirmation => "dude")

This is exactly the format needed to initialize a User model object with the given
ateributes.

Of course, instantiating such a variable has implications for successful signup—
as we'll see in Section 8.3, once @user is defined properly, calling @user.save is all
that’s needed to complete the registration—but it has consequences even in the failed
signup considered here. Note in Figure 8.6 that the fields are pre-filled with the data
from the failed submission. This is because form_for automatically fills in the fields
with the attributes of the @user object, so that, for example, if @user .name is "Foo"
then

<%= form_for (Guser) do |f| %>
<div class="field">
<%= f.label :name 2%>

<%= f.text_field :name %>
</div>

will produce the HTML

<form action="/users" class="new_user" id="new_user" method="post">

<div class="field">

<label for="user_name">Name</label>

<input id="user_name" name="user [name]" size="30" type="text" value="Foo"/>
</div>

Here the value of the input tag is "Foo", so that’s what appears in the text field.

8.2 Signup Failure 299

8.2.3 Signup Error Messages

Though not strictly necessary, it’s helpful to output error messages on failed signup to
indicate the problems that prevented successful user registration. Rails provides just such
messages based on the User model validations. For example, consider trying to save a
user with an invalid email address and with a short password:

S rails console

>> user = User.new(:name => "Foo Bar", :email => "foo@invalid",

?> :password => "dude", :password_confirmation => "dude")
>> user.save

=> false

>> user.errors.full messages

=> ["Email is invalid", "Password is too short (minimum is 6 characters)"]

Here the errors. full_messages object (which we saw briefly in Section 6.2.1) con-
tains an array of error messages.

As in the console session above, the failed save in Listing 8.7 generates a list of error
messages associated with the @user object. To display the messages in the browser, we’ll
render an error-messages partial on the user new page (Listing 8.8).

Listing 8.8 Code to display error messages on the signup form.
app/views/users/new.html.erb

<hl>Sign up</hl>

<%= form_for (Quser) do |f| %>
<%= render 'shared/error_messages' $>

<% end %>

Notice here that we render a partial called ’ shared/error_messages’; this reflects
a common Rails convention that puts partials we expect to be used from multiple
controllers in a dedicated shared/ directory. (We'll see this expectation fulfilled in

3. Before Rails 3, displaying error messages was done through a magical call to a special error_messages
method on the form object £, as follows: <%= f£.error_messages %>. Though often convenient, this magical
method was hard to customize, so the Rails Core team decided to recommend using Embedded Ruby to display
the errors by hand.

300 Chapter 8: Sign Up
Section 10.1.1.) This means that we have to create this new directory along with the
_error_messages.html.erb partial file. The partial itself appears in Listing 8.9.

Listing 8.9 A partial for displaying form submission error messages.
app/views/shared/_error messages.html.erb

<% if @Quser.errors.any? %>
<div id="error_explanation">
<h2><%= pluralize(@user.errors.count, "error") $>
prohibited this user from being saved:</h2>
<p>There were problems with the following fields:</p>

<% @Quser.errors.full messages.each do |msg| %>
<1li><%= msg $></1i>
<% end %>

</div>
<% end %>

This partial introduces several new Rails and Ruby constructs, including two methods
for objects of class Array. Let’s open up a console session to see how they work. The
first method is count, which simply returns the number of elements in the object:

$ rails console

>> a = [1, 2, 3]
= [1, 2, 3]

>> a.count

=> 3

The other new method is any?, one of a pair of complementary methods:

>> [].empty?
=> true

>> [].any?
=> false

>> a.empty?
=> false

>> a.any?

=> true

We see here that the empty? method, which we first saw in Section 4.2.3 in the context
of strings, also works on arrays, returning true for an empty array and false otherwise.

8.2 Signup Failure 301

The any? method is just the opposite of empty?, returning true if there are any elements
in the array and false otherwise.

The other new idea is the pluralize text helper. It isn’t available in the console,
but we can include it explicitly through the ActionView: :Helpers: : TextHelper
module:*

>> include ActionView: :Helpers: :TextHelper
=> Object

>> pluralize(l, "error")

=> "1 error"

>> pluralize(5, "error")

=> "5 errors"

We see here that pluralize takes an integer argument and then returns the number
with a properly pluralized version of its second argument. Underlying this method is a
powerful inflector that knows how to pluralize a large number of words (including many
with irregular plurals):

>> pluralize(2, "woman")
=> "2 women"

>> pluralize(3, "erratum")
=> "3 errata"

As a result, the code

<%= pluralize(@Quser.errors.count, "error") %>

returns "1 error" or "2 errors" (etc.) depending on how many errors there are.

Note that Listing 8.9 includes the CSS id error_explanation for use in styling
the error messages. (Recall from Section 5.1.2 that CSS uses the pound sign # to style
ids.) In addition, on error pages Rails automatically wraps the fields with errors in divs
with the CSS class field_with_errors. These labels then allow us to style the error
messages with the CSS shown in Listing 8.10. As a result, on failed submission the
error messages appear as in Figure 8.7. Because the messages are generated by the model
validations, they will automatically change if you ever change your mind about, say, the
format of email addresses, or the minimum length on passwords.

4.1 figured this out by looking up pluralize in the Rails APL

302

Listing 8.10 CSS for styling error messages.

public/stylesheets/custom.css

Chapter 8: Sign Up

.field_with_errors {
margin-top: 10px;
padding: 2px;
background-color: red;
display: table;

.field_with errors label {
color: #fff;

#error_explanation {
width: 400px;
border: 2px solid red;
padding: 7px;
padding-bottom: 12px;
margin-bottom: 20px;
background-color: #f0f0£f0;

#error_explanation h2 {
text-align: left;
font-weight: bold;
padding: 5px 5px 5px 15px;
font-size: 12px;
margin: -7px;
background-color: #c00;
color: #fff;

#error_explanation p {
color: #333;
margin-bottom: 0;
padding: 5px;

#error_explanation ul 1i {
font-size: 12px;
list-style: square;

8.2 Signup Failure 303

Ruby on Rails Tutorial Sample App | Sign up =)

it | [hecalhost 3000 uiers ur ﬂ

2 errors profibied Bus user from bena saved

There were problems with the following fields:

= Emal i vvalid
w Password i 100 $hort (mremuen i 6 charcten)

| |

Figure 8.7 Failed signup with error messages.

8.2.4 Filtering Parameter Logging

Before moving on to successful signup, there’s one loose end to tie off. You might have
noticed that, even though we went to great pains to encrypt the password in Chapter 7,
both the password and its confirmation appear as cleartext in the debug information. By
itself this is no problem—recall from Listing 6.23 that this information only appears for
applications running in development mode, so actual users would never see it—but it
does hint at a potential problem: the passwords might also appear unencrypted in the
log file that Rails uses to record information about the running application. Indeed, in
previous versions of Rails, the development log file in this case would contain lines like
those shown in Listing 8.11.

304 Chapter 8: Sign Up

Listing 8.11 The pre—Rails 3 development log with visible passwords.
log/development.log

Parameters: {"commit"=>"Sign up", "action"=>"create",
"authenticity_token"=>"KI1HchFF8uYE8ZaQKz5DVGIVF2KGoXJudJGp/VE3NMjA=",
"controller"=>"users",
"user"=>{"name"=>"Foo Bar", "password_confirmation"=>"dude",
"password"=>"dude", "email"=>"foo@invalid"}}

It would be a terrible security breach to store unencrypted passwords in the log
files—if anyone ever got a hold of the file, they would potentially obtain the passwords
for every user on the system. (Of course, here the signup fails, but the problem is
exactly the same for successful submissions.) Since this problem was so common in
Rails applications, Rails 3 implements a new default: all password attributes are filtered
automatically, as seen in Listing 8.12. We see that the string " [FILTERED] " appears in
place of the password and password confirmation. (In production, the log file will be
log/production.log, and the filtering will work the same way.)

Listing 8.12 The development log with filtered passwords.
log/development.log

Parameters: {"commit"=>"Sign up", "action"=>"create",
"authenticity_ token"=>"KIHchFF8uYE8ZaQKz5DVGIVF2KGoXJudJGp/VE3NMjA=",
"controller"=>"users",
"user"=>{"name"=>"Foo Bar", "password_confirmation"=>"[FILTERED]",
"password"=>"[FILTERED]", "email"=>"foo@invalid"}}

The password filtering itself is accomplished via a setting in the application.rb
configuration file (Listing 8.13).

Listing 8.13 Filtering passwords by default.
config/application.rb

require File.expand_path('../boot"', FILE_)

require 'rails/all’
If you have a Gemfile, require the gems listed there, including any gems
you've limited to :test, :development, or :production.

Bundler.require(:default, Rails.env) if defined? (Bundler)

module SampleApp

8.3 Signup Success 305

class Application < Rails::Application

Configure sensitive parameters which will be filtered from the log file.
config.filter_parameters += [:password]
end
end

If you ever write a Rails application with a secure parameter with a name ozber than
password, you will need to add it to the array of filtered parameters. For example, if
you included a secret code as part of the signup process, you might include a line like

<div class="field">
<%= f.label :secret_code $%$>

<%= f.text_field :secret_code %>
</div>

in the signup form. You would then need to add :secret_code to application.rb
as follows:

config.filter parameters += [:password, :secret_code]

8.3 Signup Success

Having handled invalid form submissions, now it’s time to complete the signup form by
actually saving a new user (if valid) to the database. First, we try to save the user; if the
save succeeds, the user’s information gets written to the database automatically, and we
then redirect the browser to show the user’s profile (together with a friendly greeting),
as mocked up in Figure 8.8. If it fails, we simply fall back on the behavior developed in
Section 8.2.

8.3.1 Testing Success

The tests for a successful signup follow the lead of the failed signup tests from Listing 8.6.
Let’s take a look at the result, shown in Listing 8.14.

306 Chapter 8: Sign Up

()

Welcome to the Sample App!

RaOUI Du ke Name Raoul Duke

URL [users/9

Figure 8.8 A mockup of successful signup.

Listing 8.14 Tests for signup success.
spec/controllers/users_controller spec.rb

require 'spec_helper'

describe UsersController do

render_views

describe "POST 'create'" do

describe "success" do

8.3 Signup Success 307

before(:each) do
Qattr = { :name => "New User", :email => "user@example.com",
:password => "foobar", :password_confirmation => "foobar" }
end

it "should create a user" do
lambda do
post :create, :user => @attr
end.should change (User, :count) .by(1)
end

it "should redirect to the user show page" do
post :create, :user => @attr
response.should redirect_to(user_path(assigns(:user)))
end
end
end
end

As with the signup failure tests (Listing 8.6), here we use post :create to hit the
create action with an HTTP POST request. As in the failed creation tests from
Listing 8.6, the first test wraps the user creation in a lambda and uses the count method
to verify that the database has changed appropriately:

it "should create a user" do
lambda do
post :create, :user => @attr
end.should change(User, :count).by (1)
end

Here, instead of should_not change (User, :count) as in the case of a failed user
creation, we have should change(User, :count).by(1), which asserts that the
lambda block should change the user count by 1.

The second test uses the assigns method first seen in Listing 7.17 to verify that
the create action redirects to the newly created user’s show page:

it "should redirect to the user show page" do

post :create, :user => Qattr

response.should redirect_to (user_path(assigns(:user)))
end

308 Chapter 8: Sign Up

This is the kind of redirect that happens on nearly every successful form submission on
the web, and with RSpec’s helpful syntax you don’t have to know anything about the
underlying HTTP response code.” The URL itself is generated using the named route
user path shown in Table 7.1.

8.3.2 The Finished Signup Form

To get these tests to pass and thereby complete a working signup form, fill in the
commented-out section in Listing 8.7 with a redirect, as shown in Listing 8.15.

Listing 8.15 The user create action with a save and a redirect.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def create
@Quser = User.new(params]|[:user])
if Quser.save

redirect_to Quser

else
@title = "Sign up"
render 'new'
end
end
end

Note that we can omit the user_path in the redirect, writing simply redirect_to
@user to redirect to the user show page, a convention we saw before with 1ink_to in
Listing 7.25. This syntax is nicely succinct, but unfortunately RSpec doesn’t understand
it, so we have to use the more verbose user_path (@user) in that case.

8.3.3 The Flash

Before submitting a valid registration in a browser, we’re going to add a bit of polish com-
mon in web applications: a message that appears temporarily and then disappears upon
page reload. (If this is unclear now, be patient; a concrete example appears shortly.) The

5. In case you're curious, the response code is 302, in contrast to the “permanent” 301 redirect discussed
briefly in Box 3.2.

8.3 Signup Success 309

Rails way to accomplish this is to use a special variable called the flash, which operates like
flash memory in that it stores its data temporarily. The £1ash variable is effectively a hash;
you may even recall the console example in Section 4.3.3, where we saw how to iterate
through a hash using a strategically named £1ash hash. To recap, try this console session:

S rails console

>> flash = { :success => "It worked!", :error => "It failed. :-(" }
=> {:success=>"It worked!", :error => "It failed. :-("}
>> flash.each do |key, value|

2> puts "#{key}"

?> puts "#{value}"

>> end

success

It worked!

error

It failed. :-(

We can arrange to display the contents of the flash site-wide by including it in our
application layout, as in Listing 8.16.

Listing 8.16 Adding the contents of the £1ash variable to the site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

<%= render 'layouts/header' $%$>
<section class="round">
<% flash.each do |key, value| %>
<div class="flash <%= key $%>"><%= value $%></div>
<% end %>
<%= yield %>
</section>

</html>

This code arranges to insert a div tag for each element in the flash, with a CSS class
indicating the type of message. For example, if flash[:success] = "Welcome to
the Sample App!", then the code

310 Chapter 8: Sign Up

<% flash.each do |key, value| $%>
<div class="flash <%= key 8%>"><%= value $%></div>
<% end %>

will produce this HTML:®

<div class="flash success">Welcome to the Sample App!</div>

The reason we iterate through all possible key/value pairs is so that we can include other
kinds of flash messages; for example, in Listing 9.8 we’ll see £1ash[:error] used to
indicate a failed signin attempt.”

Let’s test for the right flash message by making sure the right message appears under
the key :success (Listing 8.17).

Listing 8.17 A test for a flash message on successful user signup.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

render_views

describe "POST 'create'" do

describe "success" do

it "should have a welcome message" do
post :create, :user => @attr
flash[:success].should =~ /welcome to the sample app/i
end
end
end
end

6. Note that the key :success is a symbol, but Embedded Ruby automatically converts it to the string
nsuccess" before inserting it into the template.

7. Actually, we’ll use the closely related £1ash.now, but we’ll defer that subtlety until we need it.

8.3 Signup Success 311

This introduces the “equals-tilde” =~ operator for comparing strings to regular expres-
sions. (We first saw regular expressions in the email_regex of Listing 6.17). Rather
than testing for the full flash message, we just test to make sure that “welcome to the
sample app” is present. (Note that we don’t yet test for the appearance of the actual flash
message’s HTML; we'll fix this by testing for the actual div tag in Section 8.4.3.)
Ifyou’ve programmed much before, it’s likely that you’re already familiar with regular
expressions, but here’s a quick console session in case you need an introduction:

>> "foo bar" =~ /Foo/ # Regex comparison 1s case-sensitive by default.
=> nil

>> "foo bar" =~ /foo/

=> 0

Here the console’s return values may look odd: for no match, the regex comparison
returns nil; for a match, it returns the 7ndex (position) in the string where the match
starts.® Usually, though, the exact index doesn’t matter, since the comparison is usually
used in a boolean context: recall from Section 4.2.3 that nil is false in a boolean
context and that anything else (even 0) is true. Thus, we can write code like this:

>> success = "Welcome to the Sample App!"

=> "Welcome to the Sample App!"

>> "It's a match!" if success =" /welcome to the sample app/
=> nil

Here there’s no match because regular expressions are case-sensitive by default, but we
can be more permissive in the match using /. . .74 to force a case-insensitive match:

>> "It's a match!" if success =" /welcome to the sample app/i
=> "It's a match!"

Now that we understand how the flash test’s regular expression comparison works,
we can get the test to pass by assigning to flash[:success] in the create action as

in Listing 8.18. The message uses different capitalization from the one in the test, but

8. The indices are zero-offset, as with arrays (Section 4.3.1), so a return value of 0 means the string matches the
regular expression starting with the first character.

312 Chapter 8: Sign Up
the test passes anyway because of the i at the end of the regular expression. This way we
won’t break the test if we write, e.g., sample app in place of Sample App.

Listing 8.18 Adding a flash message to user signup.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def create
@Quser = User.new(params|[:user])
if Quser.save

flash[:success] = "Welcome to the Sample App!"
redirect_to @user
else
@title = "Sign up"
render 'new'
end
end

end

8.3.4 The First Signup

We can see the result of all this work by signing up our first user (under the name “Rails
Tutorial” and email address “example@railstutorial.org”), which shows a friendly
message upon successful signup, as seen in Figure 8.9. (The nice green styling for the
success class comes included with the Blueprint CSS framework from Section 4.1.2.)
Then, upon reloading the user show page, the flash message disappears as promised
(Figure 8.10).

We can now check our database just to be double-sure that the new user was actually
created:

$ rails console

>> user = User.first

=> #<User id: 1, name: "Rails Tutorial", email: "example@railstutorial.org",
created_at: "2010-02-17 03:07:53", updated_at: "2010-02-17 03:07:53",
encrypted_password: "48aa8f4444b71£3£713d87d051819b0d44cd89f4a963949f201...",
salt: "£52924ba502d4£92a634d4£9647622ccce26205176ccecal2adc...">

Success!

8.4 RSpec Integration Tests 313

ann Ruby on Rails Tutorial Sample App | Rails Tutorial
- AET

@‘('C'J(' Bt B hto | nocaibost 3000 wiens i | VI

Sample App

Welcome to the Sample App!

Name Rails Tutorial

7 Rails Tutorial ey

["n Oome 0 wirors | O marmngs 470

Figure 8.9 The results of a successful user signup, with flash message.

8.4 RSpec Integration Tests

In principle, we are done with user signup at this point, but you may have noticed that
we haven’t tested the structure of the signup form, nor have we tested that submissions
actually work. Of course, we have checked these things by viewing the pages in our
browser, but the whole point of automated testing is to make sure that once things work
they stay that way. Making such tests is the goal of this section—and the results are
pretty sweet.

One testing method would be to check the HTML structure of the form (using
render_views and the have_selector method), and indeed this is a good way to
test-drive views. (Section 8.6 has an exercise to this effect.) But I prefer not to test the
detailed HTML structure of views—I don’t see any reason why we should have to know
that Rails implements user email submission using name="user[email]", and indeed
any test of that structure would break if a future Rails version changed this convention.
Moreover, it would be nice to have a test for the entire signup process: visiting the signup

314 Chapter 8: Sign Up

anh Ruby on Rails Tutonal Sample App | Rails Tutonal -
"4 ™ o a0 (f_“'v--..-.: focalhost 4000 jusers /| 5D
Sample App
s & Name Rails Tutorial
f 7 Rails Tutorial P .

["a_Bone ') O arrens J O warnings 4"

Figure 8.10 The flash-less profile page after a browser reload.

page, filling in the form values, clicking the button, and making sure (if the submission
is valid) that a new user gets created in the (test) database.

Though it’s not the only way (see Box 8.1), my preferred solution to this problem is to
use an RSpec integration test, which we first used in Section 5.2.1 to test the custom routes
(such as /about for the About page). In that section, we saw only a tiny fraction of the
power of integration tests; starting in this section, we’ll see just how amazing they can be.

Box 8.1 Integration alternatives

As we've seen in this and previous chapters, Ruby on Rails Tutorial uses RSpec for all its
tests, including integration tests. In my view, there is no match for the simplicity and
power of RSpec integration tests. There are a couple of viable alternatives, though.
One is the Rails default, integration testing with Test : : Unit. This is fine if you use
Test: :Unit elsewhere, but we're using RSpec in this tutorial, and | prefer not to mix
RSpec and Test: :Unit in a single project.

8.4 RSpec Integration Tests 315

A second option is Cucumber, which works nicely with RSpec and allows the def-
inition of plain-text stories describing application behavior. Many Rails programmers
find Cucumber especially convenient when doing client work; since they can be read
even by non-technical users, Cucumber tests, or “scenarios”’, can be shared with (and
can sometimes even be written by) the client. Of course, using a testing framework
that isnt pure Ruby has a downside, and | find that the plain-text stories can be a bit
verbose and (cu)cumbersome. Since we don’t have any client requirements in Rails
Tutorial, and since | strongly prefer a pure-Ruby testing approach in any case, we’'ll
stick to RSpec integration tests in this book. Nevertheless, | suggest taking a look at
some Cucumber tutorials some time to see if it suits you.

8.4.1 Integration Tests with Style

We saw in Listing 5.13 that RSpec integration tests support controller-test—style con-
structions such as

get '/’
response.should have_selector('title', :content => "Home")

This is not the only kind of syntax supported, though; RSpec integration tests also
support a highly expressive web-navigation syntax.” In this section, we’ll see how to use
this syntax to simulate filling out the signin form using code like

visit signin_path
fill_in "Name", :with => "Example User"
click_button

8.4.2 Users Signup Failure Should Not Make a New
User

Now we're ready to make an integration test for signing up users. As we saw in
Section 5.2.1, RSpec comes with a generator to make such integration specs; in the

9. As of this writing, this syntax is available thanks to Webrat, which appears as a gem dependency for rspec-
rails, but Webrat was written before the widespread adoption of Rack and will eventually be supplanted by
the Capybara project. Happily, Capybara is designed as a drop-in replacement for Webrat, so the syntax should
remain the same.

316 Chapter 8: Sign Up

ann Rubyy on Rals Tutorial Sample App | Sgn up -
o”.@oo | hatp / /localhast 1000 users [

Sign up

There were problems with the following fields:
® Narrw can't b blank.

» Emal cant be blank

« Email i nvang

& Passworg can 1 De Dlark.

© PASSWONT 1 100 570N IMIITUM | 6 CRarcters)

xted tus e b

Figure 8.11 The result of visiting / signup and just clicking “’Sign up”.

present case, our integration tests will contain various actions taken by users, so we’ll
name the test users accordingly:

$ rails generate integration_test users
invoke rspec
create spec/requests/users_spec.rb

As in Section 5.2.1, the generator automatically appends a spec identifier, yielding
users_spec.rb. 10

We start with signup failure. A simple way to arrange a failing signup is to visit
the signup URL and just click the button, resulting in a page as in Figure 8.11. Upon

10. Note the plural; this is 70t the User spec user_spec . rb, which is a model test, not an integration test.

8.4 RSpec Integration Tests 317

failed submission, the response should render the users/new template. If you inspect
the resulting HTML, you should see something like the markup in Listing 8.19. This
means that we can test for the presence of error messages by looking for a div tag with
the CSS id "error_explanation". A test for these steps appears in Listing 8.20.

Listing 8.19 The error explanation div from the page in Figure 8.11.

<div class="error_explanation" id="error_explanation">
<h2>5 errors prohibited this user from being saved</h2>
<p>There were problems with the following fields:</p>

Name can't be blank</1i>
<1li>Email can't be blank</1li>
<1li>Email is invalid</1li>
Password can't be blank</1i>
Password is too short (minimum is 6 characters)</1li>

</div>

Listing 8.20 Testing signup failure.
spec/requests/users_spec.rb

require 'spec_helper'

describe "Users" do

describe "signup" do

describe "failure" do

it "should not make a new user" do
visit signup_path

fill_in "Name", :with => ""
fill in "Email", cwith => "
fill_in "Password", cwith => "
£fill _in "Confirmation", :with => ""

click_button
response.should render_template('users/new')
response.should have_selector ("div#error_explanation")
end
end
end
end

318 Chapter 8: Sign Up

Here "div#error_explanation" is CSS-inspired shorthand for

<div id="error_explanation">...</div>

Notice how natural the language is in Listing 8.20. The only problem is that it
doesn’t quite test what we want: we’re not actually testing that a failed submission fails
to create a new user. To do so, we need to wrap the test steps in a single package,
and then check that it doesn’t change the User count. As we saw in Listing 8.6 and
Listing 8.14, this can be accomplished with a 1ambda. In those cases, the 1ambda block
only contained a single line, but we see in Listing 8.21 that it can wrap multiple lines

just as easily.

Listing 8.21 Testing signup failure with a 1lambda.
spec/requests/users_spec.rb

require 'spec_helper'

describe "Users" do

describe "signup" do

describe "failure" do

it "should not make a new user" do

lambda do
visit signup_path

fill_in "Name", cwith => "
£fill_in "Email", cwith => "
fill_in "Password", cwith => "
fill_in "Confirmation", :with => ""

click_button

response.should render_template('users/new')
response.should have_selector ("div#error_explanation")

end.should_not change(User, :count)
end
end
end
end

As in Listing 8.6, this uses

8.4 RSpec Integration Tests 319

should_not change (User, :count)

to verify that the code inside the 1ambda block doesn’t change the value of user. count.
The integration test in Listing 8.21 ties together all the different parts of Rails,

including models, views, controllers, routing, and helpers. It provides an end-to-end

verification that our signup machinery is working, at least for failed submissions.

8.4.3 Users Signup Success Should Make a New User

We come now to the integration test for successful signup. In this case, we need to fill
in the signup fields with valid user data. When we do, the result should be the user
show page with a “flash success” div tag, and it should change the User count by 1.
Listing 8.22 shows how to do it.

Listing 8.22 Testing signup success.
spec/requests/users_spec.rb

require 'spec_helper'

describe "Users" do

describe "signup" do

describe "success" do

it "should make a new user" do
lambda do
visit signup_path

fill_in "Name", :with => "Example User"
fill_in "Email", :with => "user@example.com"
fill_in "Password", :with => "foobar"

fill_in "Confirmation", :with => "foobar"

click_button
response.should have_selector ("div.flash.success",
:content => "Welcome")
response.should render_template('users/show')
end.should change (User, :count) .by (1)
end
end
end
end

320 Chapter 8: Sign Up

By the way, although it’s not obvious from the RSpec documentation, you can use the
CSS id of the text box instead of the label, so £i11_in :user_ name also works.!! (This
is especially nice for forms that don’t use labels.)

I hope you agree that this web navigation syntax is incredibly natural and succinct.
For example, to fill in a field with a value, we just use code like this:

fill_in "Name", :with => "Example User"
fill_in "Email", :with => "user@example.com"
fill_in "Password", :with => "foobar"

fill_in "Confirmation", :with => "foobar"

Here the first arguments to £i11_in are the label values, i.c., exactly the text the user
sees in the browser; there’s no need to know anything about the underlying HTML
structure generated by the Rails form_for helper.

Finally, we come to the coup de grice—testing that successful signup actually creates

a user in the database:

it "should make a new user" do
lambda do

end.should change (User, :count) .by(1l)

As in Listing 8.21, we’ve wrapped the code for a successful signup in a 1ambda block. In
this case, instead of making sure that the User count doesn t change, we verify that it in-
creases by 1 due to a User record being created in the test database. The result is as follows:

$ rspec spec/requests/users_spec.rb

Finished in 2.14 seconds
2 examples, 0 failures

11. You can use Firebug or your browser’s “view source” if you need to figure out the id. Or you can note
that Rails uses the name of the resource and the name of the attribute separated with an underscore, yielding

user_name, user_email, etc.

8.6 Exercises 321

With that, our signup integration tests are complete, and we can be confident that,
if users don’t join our site, it’s not because the signup form is broken.

8.5 Conclusion

Being able to sign up users is a major milestone for our application. Though the sample
app has yet to accomplish anything useful, we have laid an essential foundation for
all future development. In the next two chapters, we will complete two more major
milestones: first, in Chapter 9 we will complete our authentication machinery by allowing
users to sign in and out of the application; second, in Chapter 10 we will allow all users
to update their account information and will allow site administrators to delete users,
while also adding page protection to enforce a site security model, thereby completing
the full suite of the Users resource REST actions from Table 6.2.

As usual, if you’re using Git, you should merge your changes into the master branch
at this point:

$ git add .

$ git commit -am "User signup complete"
$ git checkout master

$ git merge signing-up

8.6 Exercises

1. Using the model in Listing 8.23, write tests to check for the presence of each field
on the signup form. (Don’t forget the render_views line, which is essential for
this to work.)

2. Oftentimes signup forms will clear the password field for failed submissions, as
shown in Figure 8.12. Modify the Users controller create action to replicate this
behavior. Hint: Reset @user .password.

3. The flash HTML in Listing 8.16 is a particularly ugly combination of HTML and
ERb. Verify by running the test suite that the cleaner code in Listing 8.24, which
uses the Rails content_tag helper, also works.

322 Chapter 8: Sign Up

S oo S Ietoom ool oo | Son e, e

heto [lecalhast 1000/ ulers v

There were problems with the following fields:

o Email & irvaia
® Password 00esn T Malch confirmaton
& Fadtword 8 100 $A0N IMAmum 4 & Chirdcers

Figure 8.12 A failed signup form submission with the password field cleared.

Listing 8.23 A template for testing for each field on the signup form.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

render_views

describe "GET 'new'" do

it "should have a name field" do
get :new
response.should have_selector ("input [name='user [name] '] [type="'text']")

8.6 Exercises

end
it "should have an email field"
it "should have a password field"

it "should have a password confirmation field"
end

end

323

Listing 8.24 The £lash ERb in the site layout using content_tag.

app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>

<section class="round">
<% flash.each do |key, value| %>

<%= content_tag(:div, value, :class => "flash #{key}")

<% end %>
<%= yield %>
</section>

</html>

%>

This page intentionally left blank

CHAPTER 9

Sign In, Sign Out

Now that new users can sign up for our site (Chapter 8), it’s time to give registered
users the ability to sign in and sign out. This will allow us to add customizations based
on signin status and depending on the identity of the current user. For example, in
this chapter we’ll update the site header with signin/signout links and a profile link; in
Chapter 11, we'll use the identity of a signed-in user to create microposts associated with
that user, and in Chapter 12 we'll allow the current user to follow other users of the
application (thereby receiving a feed of their microposts).

Having users sign in will also allow us to implement a security model, restricting
access to particular pages based on the identity of the signed-in user. For instance, as
we'll see in Chapter 10, only signed-in users will be able to access the page used to
edit user information. The signin system will also make possible special privileges for
administrative users, such as the ability (also in Chapter 10) to delete users from the
database.

As in previous chapters, we'll do our work on a topic branch and merge in the
changes at the end:

$ git checkout -b sign-in-out

9.1 Sessions

A session is a semi-permanent connection between two computers, such as a client com-

puter runninga web browser and a server running Rails. There are several different models

for session behavior common on the web: “forgetting” the session on browser close, usin
getung g

an optional “remember me” checkbox for persistent sessions, and remembering sessions

325

326 Chapter 9: Sign In, Sign Out

until the user explicitly signs out.! We'll opt for the final of these options: when users
sign in, we will remember their signin status “forever”,” clearing the session only when
the user explicitly signs out.

It’s convenient to model sessions as a RESTful resource: we’ll have a signin page for
new sessions, signing in will create a session, and signing out will destroy it. We will
therefore need a Sessions controller with new, create, and destroy actions. Unlike
the case of the Users controller, which uses a database back-end (via the User model) to
persist data, the Sessions controller will use a cookie, which is a small piece of text placed
on the user’s browser. Much of the work involved in signin comes from building this
cookie-based authentication machinery. In this section and the next, we'll prepare for
this work by constructing a Sessions controller, a signin form, and the relevant controller
actions. (Much of this work parallels user signup from Chapter 8.) We'll then complete
user signin with the necessary cookie-manipulation code in Section 9.3.

9.1.1 Sessions Controller

The elements of signing in and out correspond to particular REST actions of the Sessions
controller: the signin form is handled by the new action (covered in this section), actually
signing in is handled by sending a POST request to the create action (Section 9.2 and
Section 9.3), and signing out is handled by sending a DELETE request to the destroy
action (Section 9.4). (Recall the association of HTTP verbs with REST actions from
Table 6.2.) Since we know that we'll need a new action, we can create it when we generate
the Sessions controller (just as with the Users controller in Listing 5.23):3

$ rails generate controller Sessions new
$ rm -rf spec/views
$ rm -rf spec/helpers

Now, as with the signup form in Section 8.1, we create a new file for the Sessions
controller specs and add a couple of tests for the new action and corresponding view
(Listing 9.1). (This pattern should start to look familiar by now.)

1. Another common model is to expire the session after a certain amount of time. This is especially appropriate
on sites containing sensitive information, such as banking and financial trading accounts.

2. We'll see in Section 9.3.2 just how long “forever” is.

3. If given the create and destroy actions as well, the generate script would make views for those actions,
which we don’t need. Of course, we could delete the views, but I've elected to omit them from generate and
instead define the actions by hand.

9.1 Sessions 327

Listing 9.1 Tests for the new session action and view.
spec/controllers/sessions_controller_spec.rb

require 'spec_helper'

describe SessionsController do

render_views
describe "GET 'new'" do
it "should be successful" do
get :new
response.should be_success

end

it "should have the right title" do

get :new
response.should have_selector("title", :content => "Sign in")
end
end
end

To get these tests to pass, we first need to add a route for the new action; while we're
at it, we'll create all the actions needed throughout the chapter as well. We generally
follow the example from Listing 6.26, but in this case we define only the particular
actions we need, i.e., new, create, and destroy, and also add named routes for signin
and signout (Listing 9.2).

Listing 9.2 Adding a resource to get the standard RESTful actions for sessions.
config/routes.rb

SampleApp: :Application.routes.draw do
resources :users

resources :sessions, :only => [:new, :create, :destroyl]

match '/signup', :to => 'users#new'
match '/signin', :to => 'sessions#new'
match '/signout', :to => 'sessions#destroy'

end

328 Chapter 9: Sign In, Sign Out

Table 9.1 RESTful routes provided by the sessions rules in Listing 9.2

HTTP

Request URL Named route Action Purpose

GET /signin signin_path new page for a new session (signin)
POST /sessions sessions_path create create a new session

DELETE /signout signout_path destroy delete a session (sign our)

As you can see, the resources method can take an options hash, which in this case
has key :only and value equal to an array of the actions the Sessions controller has to
respond to. The resources defined in Listing 9.2 provide URLs and actions similar to
those for users (Table 6.2), as shown in Table 9.1.

We can get the second test in Listing 9.1 to pass by adding the proper title instance
variable to the new action, as shown in Listing 9.3 (which also defines the create and
destroy actions for future reference).

Listing 9.3 Adding the title for the signin page.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new
@title = "Sign in"
end

def create
end

def destroy
end
end

With that, the tests in Listing 9.1 should be passing, and we’re ready to make the actual
signin form.

9.1.2 Signin Form

The signin form (or, equivalently, the new session form) is similar in appearance to the
signup form, except with two fields (email and password) in place of four. A mockup
appears in Figure 9.1.

9.1 Sessions 329

Sign in

[|

Password

New user? Sign up now!

Figure 9.1 A mockup of the signin form.

Recall from Listing 8.2 that the signup form uses the form_for helper, taking as an

argument the user instance variable @user:

<%= form_ for (Quser) do |f| %>

<% end 3>

The main difference between this and the new session form is that we have no Session
model, and hence no analogue for the @user variable. This means that, in constructing

330 Chapter 9: Sign In, Sign Out

the new session form, we have to give form_£or slightly more information; in particular,
whereas

form_for (Guser)

allows Rails to infer that the act ion of the form should be to PoST to the URL /users, in
the case of sessions we need to indicate both the name of the resource and the appropriate

URL:

form_for(:session, :url => sessions_path)

Since we're authenticating users with email address and password, we need a field

for each one inside the form; the result appears in Listing 9.4.

Listing 9.4 Code for the signin form.
app/views/sessions/new.html.erb

<hl>Sign in</h1l>

<%= form_for(:session, :url => sessions_path) do |f| %>
<div class="field">
<%= f.label :email $%>

<%= f.text_field :email %>
</div>
<div class="field">
<%= f.label :password $>

<%= f.password_field :password %>
</div>
<div class="actions">
<%= f.submit "Sign in" %>
</div>
<% end %>

<p>New user? <%= link_to "Sign up now!", signup_path $%></p>

With the code in Listing 9.4, the signin form appears as in Figure 9.2.
Though you’ll soon get out of the habit of looking at the HTML generated by Rails
(instead trusting the helpers to do their job), for now let’s take a look at it (Listing 9.5).

9.1 Sessions 331

200 D Tt S Dok, =
{ = y htp | flocalhost 1000/ sigrin w vi

Ruby on Ralls Tutorial

Sample App

Sign in
Email

Password

(sign)

New user? Sign up now!

- TmAP MASHHITRINAIfferentAccess
action: nes
controller

sessions

Figure 9.2 The signin form (/sessions/new).

Listing 9.5 HTML for the signin form produced by Listing 9.4.

<form action="/sessions" method="post">
<div class="field">
<label for="session_email">Email</label>

<input id="session_email" name="session[email]" size="30" type="text" />

</div>
<div class="field">
<label for="session_password">Password</label>

<input id="session_password" name="session[password]" size="30"
type="password" />
</div>
<div class="actions">
<input id="session_submit" name="commit" type="submit" value="Sign in" />
</div>
</form>

332 Chapter 9: Sign In, Sign Out

Comparing Listing 9.5 with Listing 8.5, you might be able to guess that submit-
ting this form will result in a params hash where params[:session] [:email] and
params [:session] [:password] correspond to the email and password fields. Han-
dling this submission—and, in particular, authenticating users based on the submitted
email and password—is the goal of the next two sections.

9.2 Signin Failure

As in the case of creating users (signup), the first step in creating sessions (signin)
is to handle invalid input. We'll start by reviewing what happens when a form gets
submitted, and then arrange for helpful error messages to appear in the case of signin
failure (as mocked up in Figure 9.3.) Finally, we’ll lay the foundation for successful

Invalid email/password combination.

Sign in

I |

Password

I |

New user? Sign up now!

Figure 9.3 A mockup of signin failure.

9.2 Signin Failure 333

signin (Section 9.3) by evaluating each signin submission based on the validity of its
email/password combination.

9.2.1 Reviewing Form Submission

Let’s start by defining a minimalist create action for the Sessions controller (Listing 9.6),
which does nothing but render the new view. Submitting the /sessions/new form with
blank fields then yields the result shown in Figure 9.4.

Listing 9.6 A preliminary version of the Sessions create action.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def create
render 'new'

end

end

Carefully inspecting the debug information in Figure 9.4 shows that, as hinted at
the end of Section 9.1.2, the submission results in a params hash containing the email

and password under the key :session:

--- Imap:ActiveSupport: :HashWithIndifferentAccess
commit: Sign in
session: !ActiveSupport: :HashWithIndifferentAccess
password: ""
email: ""
authenticity_token: BlO65PAl0oS5vqgrv591dt9IB22HGSWWOHbBt oHKbBKYDQ=
action: create
controller: sessions

As with the case of user signup (Figure 8.6) these parameters form a nested hash like the
one we saw in Listing 4.5. In particular, params contains a nested hash of the form

{ :session => { :password => "", :email => "" } }

334 Chapter 9: Sign In, Sign Out

AL | rlecainost 3000/ sess0ns

Ruby on Rails Tutorial WISy g

Sample App

Sign in

(sigaim)
New user? Sign up now!

About Contact MWews Rails Tutorial

~== Imap:ActiveSupport HashiithIndif ferentAccess
authenticity_token: QtI1cAzTFVLbaGVsBe1H)rXyeboDUddUlcru/ anBRK]=
sesion: 'maprActiveSupport: cMashnitnlnatfferentAccess

email; ="
pasiword: *°
commit. Sign in
action. create
controller: seisions

Figure 9.4 The initial failed signin, with create as in Listing 9.6.

This means that

params|[:session]

is itself a hash:

{ :password => "", :email => "" }
As a result,

params [:session] [:email]

9.2 Signin Failure 335
is the submitted email address and

params [:session] [:password]

is the submitted password.

In other words, inside the create action the params hash has all the informa-
tion needed to authenticate users by email and password. Not coincidentally, we have
already developed exactly the method needed: User.authenticate from Section 7.2.4
(Listing 7.12). Recalling that authenticate returns nil for an invalid authentication,

our strategy for user signin can be summarized as follows:

def create
user = User.authenticate (params|[:session][:email],
params [:session] [:password])
if user.nil?
Create an error message and re-render the signin form.
else
Sign the user in and redirect to the user's show page.
end
end

9.2.2 Failed Signin (Test and Code)

In order to handle a failed signin attempt, first we need to determine that it’s a failure.
The tests follow the example from the analogous tests for user signup (Listing 8.6), as
shown in Listing 9.7.

Listing 9.7 Tests for a failed signin attempt.
spec/controllers/sessions_controller_spec.rb

require 'spec_helper'

describe SessionsController do

render_views

describe "POST 'create'" do

describe "invalid signin" do
before(:each) do

336 Chapter 9: Sign In, Sign Out

@attr = { :email => "email@example.com", :password => "invalid" }

end

it "should re-render the new page" do
post :create, :session => Qattr
response.should render_template('new')
end

it "should have the right title" do

post :create, :session => @attr

response.should have_selector("title", :content => "Sign in")
end

it "should have a flash.now message" do
post :create, :session => @attr

flash.now[:error].should =~ /invalid/i
end
end
end

end

The application code needed to get these tests to pass appears in Listing 9.8. As
promised in Section 9.2.1, we extract the submitted email address and password from
the params hash, and then pass them to the User.authenticate method. If the user
is not authenticated (i.e., if it’s ni1), we set the title and re-render the signin form.*
We'll handle the other branch of the if-else statement in Section 9.3; for now we'll just

leave a descriptive comment.

Listing 9.8 Code for a failed signin attempt.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def create
user = User.authenticate (params|[:session][:email],
params [:session] [:password])
if user.nilv?

flash.now[:error] = "Invalid email/password combination."

4. If case you're wondering why we use user instead of @user in Listing 9.8, it’s because this user variable
is never needed in any view, so there is no reason to use an instance variable here. (Using @user still works,

though.)

9.2 Signin Failure 337

@title = "Sign in"
render 'new'
else
Sign the user in and redirect to the user's show page.
end
end

end

Recall from Section 8.4.2 that we displayed signup errors using the User model
error messages. Since the session isn’t an Active Record model, this strategy won’t work
here, so instead we’ve put a message in the flash (or, rather, in £1ash.now; see Box 9.1).
Thanks to the flash message display in the site layout (Listing 8.16), the £1ash[:error]
message automatically gets displayed; thanks to the Blueprint CSS, it automatically gets
nice styling (Figure 9.5).

ann Ruby on Rails Tutorial Sample App | Sign in -
o‘ﬂ (- Ja) httg / flocainost 3000/ sesvions T

i R

.Sél'r-np.l.é App

Invalid email/password combination.
Sign in
Email

Password

« 'map HashWithindifferentAccess
commit: $ign in
1e45100° 'map HashWithIngifferentAccess
passward
ematl
authenticity _token YFEgTX)OfIs0lwd2Pun) /MegIEEr S lucvITETKALSCS

action: create

Figure 9.5 A failed signin (with a flash message).

338 Chapter 9: Sign In, Sign Out

Box 9.1 Flash Dot Now

There’s a subtle difference between £lash and flash.now. The flash variable is
designed to be used before a redirect, and it persists on the resulting page for one
request—that is, it appears once, and disappears when you click on another link. Un-
fortunately, this means that if we don‘t redirect, and instead simply render a page (as
in Listing 9.8), the flash message persists for two requests: it appears on the rendered
page but is still waiting for a “redirect” (i.e., a second request), and thus appears again
if you click a link.

To avoid this weird behavior, when rendering rather than redirecting we use
flash.now instead of f£lash. The flash.now object is specifically designed for
displaying flash messages on rendered pages. If you ever find yourself wondering
why a flash message is showing up where you don’t expect it, chances are good that
you need to replace £lash with £lash.now.

9.3 Signin Success

Having handled a failed signin, we now need to actually sign a user in. A hint of where
we're going—the user profile page, with modified navigation links—is mocked up in
Figure 9.6.% Getting there will require some of the most challenging Ruby programming
so far in this tutorial, so hang in there through the end and be prepared for a little heavy
lifting. Happily, the first step is easy—completing the Sessions controller create action
is a snap. Unfortunately, i¢’s also a cheat.

9.3.1 The Completed create Action

Filling in the area now occupied by the signin comment (Listing 9.8) is simple: upon
successful signin, we sign the user in using the sign_in function, and then redirect to
the profile page (Listing 9.9). We see now why this is a cheat: alas, sign_in doesn’t
currently exist. Writing it will occupy the rest of this section.

Listing 9.9 The completed Sessions controller create action (not yet working).
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def create

5. Image from http://www flickr.com/photos/hermanusbackpackers/3343254977/.

http://www.flickr.com/photos/hermanusbackpackers/3343254977/

9.3 Signin Success 339

user = User.authenticate(params|:session][:emaill,
params [:session] [:password])
if user.nilv?
flash.now[:error] = "Invalid email/password combination."
@title = "Sign in"
render 'new'
else
sign_in user
redirect_to user
end
end

end

Bruce Tiburon Name Bruce Tiburon

URL [users/122

()

Figure 9.6 A mockup of the user profile after a successful signin (with updated nav links).

340 Chapter 9: Sign In, Sign Out

Even though we lack the sign_in function, we can still write the tests (Listing 9.10).

(We'll fill in the body of the first test in Section 9.3.3.)

Listing 9.10 Pending tests for user signin (to be completed in Section 9.3.3).
spec/controllers/sessions_controller_ spec.rb

describe SessionsController do

describe "POST 'create'" do

describe "with valid email and password" do

before(:each) do

@user = Factory(:user)

@attr = { :email => @user.email, :password => @user.password }
end

it "should sign the user in" do

post :create, :session => Qattr

Fill in with tests for a signed-in user.
end

it "should redirect to the user show page" do
post :create, :session => @attr
response.should redirect_to(user_path (@Quser))
end
end
end
end

These tests don’t pass yet, but they’re a good start.

9.3.2 Remember Me

We’re now in a position to start implementing our signin model, namely, remembering
user signin status “forever” and clearing the session only when the user explicitly signs
out. The signin functions themselves will end up crossing the traditional Model-View-
Controller lines; in particular, several signin functions will need to be available in both
controllers and views. You may recall from Section 4.2.5 that Ruby provides a module
facility for packaging functions together and including them in multiple places, and
that’s the plan for the authentication functions. We could make an entirely new module
for authentication, but the Sessions controller already comes equipped with a module,

9.3 Signin Success 341

namely, SessionsHelper. Moreover, helpers are automatically included in Rails views,
so all we need to do to use the Sessions helper functions in controllers is to include the
module into the Application controller (Listing 9.11).

Listing 9.11 Including the Sessions helper module into the Application controller.
app/controllers/application controller.rb

class ApplicationController < ActionController::Base
protect_from_forgery
include SessionsHelper

end

By defaul, all the helpers are available in the views but not in the controllers. We need
the methods from the Sessions helper in both places, so we have to include it explicitly.

Box 9.2 Sessions and Cookies

Because HTTP is a stateless protocol, web applications requiring user signin must im-
plement a way to track each user’s progress from page to page. One technique for
maintaining the user signin status is to use a traditional Rails session (via the special
session function) to store a remember token equal to the user’s id:

session|[:remember_token] = user.id

This session object makes the user id available from page to page by storing it in
a cookie that expires upon browser close. On each page, the application can simply
call

User.find by id(session|:remember_token])

to retrieve the user. Because of the way Rails handles sessions, this process is secure;
if a malicious user tries to spoof the user id, Rails will detect a mismatch based on a
special session id generated for each session.

For our application’s design choice, which involves persistent sessions—that is,
signin status that lasts even after browser close—storing the user id is a security hole.
As soon as we break the tie between the special session id and the stored user id, a
malicious user could sign in as that user with a remember_token equal to the user’s
id. To fix this flaw, we generate a unique, secure remember token for each user based
on the user’s salt and id. Moreover, a permanent remember token would also repre-
sent a security hole—by inspecting the browser cookies, a malicious user could find
the token and then use it to sign in from any other computer, any time. We solve this
by adding a timestamp to the token, and reset the token every time the user signs into
the application. This results in a persistent session essentially impervious to attack.

342 Chapter 9: Sign In, Sign Out

Now we're ready for the first signin element, the sign_in function itself. Our
authentication method is to place a remember token as a cookie on the user’s browser
(Box 9.2), and then use the token to find the user record in the database as the user moves
from page to page (implemented in Section 9.3.3). The result, Listing 9.12, pushes two
things onto the stack: the cookies hash and current_user.® Let’s start popping them

off.

Listing 9.12 The complete (but not-yet-working) sign_in function.
app/helpers/sessions_helper.rb

module SessionsHelper

def sign_in(user)
cookies.permanent.signed|[:remember_token] = [user.id, user.salt]
current_user = user
end
end

Listing 9.12 introduces the cookies utility supplied by Rails. We can use cookies
as if it were a hash; each element in the cookie is itself a hash of two elements, a value
and an optional expires date. For example, we could implement user signin by placing
a cookie with value equal to the user’s id that expires 20 years from now:

cookies|[:remember_token] = { :value => user.id,
:expires => 20.years.from now.utc }

(This code uses one of the convenient Rails time helpers, as discussed in Box 9.3.) We
could then retrieve the user with code like

User.find_by_id(cookies|[:remember_token])

Of course, cookies isn’t really a hash, since assigning to cookies actually saves a piece
of text on the browser (as seen in Figure 9.7), but part of the beauty of Rails is that it
lets you forget about that detail and concentrate on writing the application.

6. On some systems, you might need to use self.current_user = user to get the upcoming tests to pass.

9.3 Signin Success 343

Box 9.3 Cookies Expire 20 .years.from now

You may recall from Section 4.4.2 that Ruby lets you add methods to any class, even
built-in ones. In that section, we added a palindrome? method to the String class
(and discovered as a result that "deified" is a palindrome), and we also saw how
Rails adds a blank? method to class Object (so that "".blank?, " ".blank?,
and nil.blank? are all true). The cookie code in Listing 9.12 (which internally
sets a cookie that expires 20 .years.from_now) shows yet another example of this
practice, through one of Rails’ time helpers, which are methods added to Fixnum (the
base class for numbers):

$ rails console

>> 1.year.from now

=> Sun, 13 Mar 2011 03:38:55 UTC +00:00
>> 10.weeks.ago

=> Sat, 02 Jan 2010 03:39:14 UTC +00:00

Rails adds other helpers, too:

>> 1.kilobyte
=> 1024

>> 5.megabytes
=> 5242880

These are useful for upload validations, making it easy to restrict, say, image uploads
to 5.megabytes.

Though it must be used with caution, the flexibility to add methods to built-in
classes allows for extraordinarily natural additions to plain Ruby. Indeed, much of
the elegance of Rails ultimately derives from the malleability of the underlying Ruby
language.

Unfortunately, using the user id in this manner is insecure for the same reason
discussed in Box 9.2: a malicious user could simulate a cookie with the given id, thereby
allowing access to any user in the system. The traditional solution before Rails 3 was to
create a secure remember token associated with the User model to be used in place of
the user id (see, e.g., the Rails 2.3 version of Rails Tutorial).

This pattern became so common that Rails 3 now implements it for us using

cookies.permanent.signed:

cookies.permanent.signed|[:remember_token] = [user.id, user.salt]

344 Chapter 9: Sign In, Sign Out

Search: fQ localhost

The following cookies match your search:

| Site Cookie Name

localhost _sample_app_session
localhost remember_token

Name: remember_token
Content: BAhbBZKCIKVhMjJhZTQxYzExY2120G)mOWRIYWZIMmMwNm
Host: localhost
Path: /
Send For: Any type of connection
Expires: June 20, 2030 11:28:35 AM

(Remove Cookie) | Remove All Cookies

Figure 9.7 A secure remember token.

The assignment value on the right-hand side is an array consisting of a unique identifier
(i.e., the user’s id) and a secure value used to create a digital signature to prevent the
kind of attacks described in Section 7.2. In particular, since we went to the trouble
of creating a secure salt in Section 7.2.3, we can re-use that value here to sign the
remember token. Under the hood, using permanent causes Rails to set the expiration
to 20.years. from_now, and signed makes the cookie secure, so that the user’s id is
never exposed in the browser. (We’ll see how to retrieve the user using the remember
token in Section 9.3.3.)

The code above shows the importance of using new_record? in Listing 7.10 to save
the salt only upon user creation. Otherwise, the salt would change each time the user
was saved, preventing the retrieval of the session’s user in Section 9.3.3.

9.3 Signin Success 345

9.3.3 Current User

In this section, we'll learn how to get and set the session’s current user. Let’s look again
at the sign_in function to see where we are:

module SessionsHelper

def sign_in(user)

cookies.permanent.signed|[:remember_ token] = [user.id, user.salt]
current_user = user
end

end
Our focus now is the second line:

current_user = user

The purpose of this line is to create current_user, accessible in both controllers and
views, which will allow constructions such as

<%= current_user.name %>

and

redirect_to current_user

The principal goal of this section is to define current_user.
To describe the behavior of the remaining signin machinery, we’ll first fill in the test
for signing a user in (Listing 9.13).

Listing 9.13 Filling in the test for signing the user in.
spec/controllers/sessions_controller_spec.rb

describe SessionsController do

describe "POST 'create'" do

346 Chapter 9: Sign In, Sign Out

describe "with valid email and password" do

before(:each) do

@user = Factory(:user)

@attr = { :email => @Quser.email, :password => @user.password }
end

it "should sign the user in" do
post :create, :session => Qattr
controller.current_user.should == @user
controller.should be_signed_in

end

it "should redirect to the user show page" do
post :create, :session => @attr
response.should redirect_to(user_path(Quser))
end
end
end
end

The new test uses the controller variable (which is available inside Rails tests) to check
that the current_user variable is set to the signed-in user, and that the user is signed in:

it "should sign the user in" do
post :create, :session => @Qattr

controller.current_user.should == @Quser
controller.should be_signed_in
end

The second line may be a little confusing at this point, but you can guess based on the
RSpec convention for boolean methods that

controller.should be_signed_in

is equivalent to

controller.signed_in?.should be_true

9.3 Signin Success 347

This is a hint that we will be defining a signed_in? method that returns true if a user is
signed in and false otherwise. Moreover, the signed_in? method will be attached to
the controller, not to a user, which is why we write controller.signed_in? instead of
current_user.signed_in?. (If no user is Signed in, how could we call signed_in?
on it?)

To start writing the code for current_user, note that the line

current_user = user
is an assignment. Ruby has a special syntax for defining such an assignment function,
shown in Listing 9.14.

Listing 9.14 Defining assignment to current_user.
app/helpers/sessions_helper.rb

module SessionsHelper

def sign_in(user)

end

def current_user=(user)
@current_user = user
end
end

This might look confusing, but it simply defines a method current_user= expressly
designed to handle assignment to current_user. Its one argument is the right-hand
side of the assignment, in this case the user to be signed in. The one-line method body
just sets an instance variable @current_user, effectively storing the user for later use.

In ordinary Ruby, we could define a second method, current_user, designed to
return the value of @current_user (Listing 9.15).

Listing 9.15 A tempting but useless definition for current_user.

module SessionsHelper

def sign_in(user)

348 Chapter 9: Sign In, Sign Out

end

def current_user=(user)
@current_user = user
end

def current_user
@current_user # Useless! Don't use this line.
end
end

If we did this, we would effectively replicate the functionality of attr_accessor, first
seen in Section 4.4.5 and used to make the virtual password attribute in Section 7.1.1.”
The problem is that it utterly fails to solve our problem: with the code in Listing 9.15,
the user’s signin status would be forgotten: as soon as the user went to another
page—poofl—the session would end and the user would be automatically signed out.

To avoid this problem, we can find the session user corresponding to the cookie
created by the code in Listing 9.12, as shown in Listing 9.16.

Listing 9.16 Finding the current user by remember_token.
app/helpers/sessions_helper.rb

module SessionsHelper

def current_user
@current_user ||= user_from remember_token
end

private

def user_from_remember_token
User.authenticate_with_salt (*remember_token)
end

def remember_token
cookies.signed[:remember_token] || [nil, nil]
end
end

7. In fact, the two are exactly equivalent; attr_accessor is merely a convenient way to create just such
getter/setter methods automatically.

9.3 Signin Success 349

This code uses several more advanced features of Ruby, so let’s take a moment to examine
them.

First, Listing 9.16 uses the common but initially obscure | |= (“or equals”) assign-
ment operator (Box 9.4). Its effect is to set the @current_user instance variable to the
user corresponding to the remember token, but only if @current_user is undefined.
In other words, the construction

@current_user ||= user_from remember_token

calls the user from remember token method the first time current user is

called, but on subsequent invocations returns @current_user without calling

user_ from remember t oken.8

Box 9.4 What the *$@!is | |=?

The | | = construction is very Rubyish—that is, it is highly characteristic of the Ruby
language—and hence important to learn if you plan on doing much Ruby program-
ming. Though at first it may seem mysterious, or equals is easy to understand by
analogy.

We start by noting a common idiom for changing a currently defined variable.
Many computer programs involve incrementing a variable, as in

Most languages provide a syntactic shortcut for this operation; in Ruby (and in C,
C++, Perl, Python, Java, etc.), it appears as follows:

Analogous constructs exist for other operators as well:

S rails console

>> x =1

8. This optimization technique to avoid repeated function calls is known as memorization.

350

In each case, the pattern is that x = x 0 y and x 0= y are equivalent for any
operator 0.

Another common Ruby pattern is assigning to a variable if it'snil but otherwise
leaving it alone. Recalling the or operator | | seen in Section 4.2.3, we can write this
as follows:

>> @user

=> nil

>> @user = @user || "the user"

=> "the user"

>> @user = @Quser || "another user"
=> "the user"

Since nil is false in a boolean context, the first assignmentisnil || "the user",
which evaluates to "the user™®; similarly, the second assignment is "the user"
|| "another user", which also evaluates to "the user"—since strings are true
in a boolean context, the series of | | expressions terminates after the first expression
is evaluated. (This practice of evaluating | | expressions from left to right and stopping
on the first true value is known as short-circuit evaluation.)

Comparing the console sessions for the various operators, we see that @user =
@user || value follows thex = x O y pattern with | | in the place of 0, which
suggests the following equivalent construction:

>> @user ||= "the user"
=> "the user"

Voila!

Listing 9.16 also uses the * operator, which allows us to use a two-element array as
an argument to a method expecting two variables, as we can see in this console session:

$ rails console

>> def foo(bar, baz)
?> bar + baz

?> end

=> nil

>> foo(l, 2)

=> 3

>> foo(*[2, 31)

=> 5

The reason this is needed in Listing 9.16 is that cookies.signed[:remember_me]
returns an array of two elements—the user id and the salt—but (following usual Ruby

Chapter 9: Sign In, Sign Out

9.3 Signin Success 351

conventions) we want the authenticate_with_salt method to take two arguments,
so that it can be invoked with

User.authenticate_with_salt(id, salt)

(There’s no fundamental reason that authenticate_with_salt couldn’t take an array
as an argument, but it wouldn’t be idiomatically correct Ruby.)

Finally, in the remember_token helper method defined by Listing 9.16, we use
the | | operator to return an array of nil values if cookies.signed[: remember_mel
itself is nil:

cookies.signed|[:remember_token] || [nil, nil]

The reason for this code is that the support for signed cookies inside Rails tests is still
immature, and anil value for the cookie causes spurious test breakage. Returning [nil,
nil] instead fixes the issue.’

The final step to getting the code in Listing 9.16 working is to define an authen-
ticate _with_salt class method. This method, which is analogous to the original

authenticate method defined in Listing 7.12, is shown in Listing 9.17.

Listing 9.17 Adding an authenticate_with_salt method to the User model.
app/models/user.rb

class User < ActiveRecord::Base

def self.authenticate(email, submitted_password)

user = find_by_email (email)

return nil if user.nilv?

return user if user.has_password? (submitted_password)
end

def self.authenticate_with_salt(id, cookie_salt)
user = find by id(id)
(user && user.salt == cookie_salt) ? user : nil

9. This feels like the tail wagging the dog, but that’s the price we pay for being on the cutting edge.

352 Chapter 9: Sign In, Sign Out

end

end

Here authenticate_with_salt firsts finds the user by unique id, and then verifies
that the salt stored in the cookie is the correct one for that user.

It’s worth noting that this implementation of authenticate_with_salt is iden-
tical in function to the following code, which more closely parallels the authenticate
method:

def self.authenticate_with_salt(id, cookie_salt)
user = find by id(id)
return nil if user.nil?
return user if user.salt == cookie_salt

end

In both cases, the method returns the user if user is not nil and the user salt matches
the cookie’s salt, and returns nil otherwise. On the other hand, code like

(user && user.salt == cookie_salt) ? user : nil

is common in idiomatically correct Ruby, so I thought it was a good idea to intro-
duce it. This code uses the strange but useful ternary operator to compress an if-else
construction into one line (Box 9.5).

Box 9.5 10 Types of People

There are 10 kinds of people in the world: Those who like the ternary operator, those
who don’t, and those who don’t know about it. (If you happen to be in the third
category, soon you won't be any longer.)

When you do a lot of programming, you quickly learn that one of the most com-
mon bits of control flow goes something like this:

if boolean?
do_one_thing

else
do_something_else

end

9.3 Signin Success 353

Ruby, like many other languages (including C/C++, Perl, PHP, and Java), allows you
to replace this with a much more compact expression using the ternary operator (so
called because it consists of three parts):

boolean? ? do_one_thing : do_something_else
You can also use the ternary operator to replace assignment:

if boolean?
var = foo
else
var = bar
end

becomes
var = boolean? ? foo : bar

The ternary operator is common in idiomatic Ruby, so it's a good idea to look for
opportunities to use it.

At this point, the signin test is almost passing; the only thing remaining is to define
the required signed_in? boolean method. Happily, it’s easy with the use of the “not”
operator !: a user is signed in if current_user is not nil (Listing 9.18).

Listing 9.18 The signed_ in? helper method.
app/helpers/sessions_helper.rb

module SessionsHelper

def signed_in?
lcurrent_user.nil?

end

private

end

Though it’s already useful for the test, we'll put the signed_in? method to even better
use in Section 9.4.3 and again in Chapter 10.
With that, all the tests should pass.

354 Chapter 9: Sign In, Sign Out

9.4 Signing Out

As discussed in Section 9.1, our authentication model is to keep users signed in until they
sign out explicitly. In this section, we’ll add this necessary signout capability. Once we’re
done, we'll add some integration tests to put our authentication machinery through its
paces.

9.4.1 Destroying Sessions

So far, the Sessions controller actions have followed the RESTful convention of using
new for a signin page and create to complete the signin. We’ll continue this theme by
using a destroy action to delete sessions, i.e., to sign out.

In order to test the signout action, we first need a way to sign in within a test.
The easiest way to do this is to use the controller object we saw in Section 9.3.3
and use the sign_in helper to sign in the given user. In order to use the resulting
test_sign_in function in all our tests, we need to put it in the spec helper file, as
shown in Listing 9.19.1°

Listing 9.19 A test_sign_in function to simulate user signin inside tests.
spec/spec_helper.rb

Rspec.configure do |config]|

def test_sign_in(user)
controller.sign_in(user)
end
end

After running test_sign_in, the current_user will not benil, so signed_in? will

bC true.

10. If you are using Spork, this will be located inside the spork.prefork block.

9.4 Signing Out 355

With this spec helper in hand, the test for signout is straightforward: sign in as a
(factory) user and then hit the destroy action and verify that the user gets signed out
(Listing 9.20).

Listing 9.20 A test for destroying a session (user signout).
spec/controllers/sessions_controller_spec.rb

describe SessionsController do

describe "DELETE 'destroy'" do

it "should sign a user out" do
test_sign_in(Factory(:user))
delete :destroy
controller.should_not be_signed_in
response.should redirect_to (root_path)

end

end
end

The only novel element here is the delete method, which issues an HTTP DELETE
request (in analogy with the get and post methods seen in previous tests), as required
by the REST conventions (Table 9.1).

As with user signin, which relied on the sign_in function, user signout just defers
the hard work to a sign_out function (Listing 9.21).

Listing 9.21 Destroying a session (user signout).
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def destroy
sign_out
redirect_to root_path
end
end

As with the other authentication elements, we'll put sign_out in the Sessions helper
module (Listing 9.22).

356 Chapter 9: Sign In, Sign Out

Listing 9.22 The sign_out method in the Sessions helper module.
app/helpers/sessions_helper.rb

module SessionsHelper

def sign_in(user)
cookies.permanent.signed|[:remember_token] = [user.id, user.salt]
current_user = user

end

def sign_out
cookies.delete(:remember_token)
current_user = nil

end

private

end

As you can see, the sign_out method effectively undoes the sign_in method by
deleting the remember token and by setting the current user to nil.!!

9.4.2 Signin Upon Signup
In principle, we are now done with authentication, but as currently constructed there
are no links to the signin or signout actions. Moreover, newly registered users might be
confused, as they are not signed in by default.

We'll fix the second problem first, starting with testing that a new user is automati-
cally signed in (Listing 9.23).

Listing 9.23 Testing that newly signed-up users are also signed in.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

11. You can learn about things like cookies . delete by reading the cookies entry in the Rails API. (Since Rails
API links tend to go stale quickly, use your Google-fu to find a current version.)

9.4 Signing Out 357

render_views

describe "POST 'create'" do

describe "success" do

it "should sign the user in" do
post :create, :user => @Qattr
controller.should be_signed_in
end

end
end
end

With the sign_in method from Section 9.3, getting this test to pass by actually
signing in the user is easy: just add sign_in @user right after saving the user to the

database (Listing 9.24).

Listing 9.24 Signing in the user upon signup.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def create
@user = User.new(params/[:user])
if @user.save
sign_in @user
flash[:success] = "Welcome to the Sample App!"
redirect_to @user
else
@title = "Sign up"
render 'new'
end
end

358 Chapter 9: Sign In, Sign Out

9.4.3 Changing the Layout Links

We come finally to a practical application of all our signin/out work: we’ll change the
layout links based on signin status. In particular, as seen in the Figure 9.6 mockup, we’ll
arrange for the links change when users sign in or sign out, and we’ll also add a profile
link to the user show page for signed-in users.

We start with two integration tests: one to check that a "*sign in" link appears
for non-signed-in users, and one to check that a "sign out" link appears for signed-in
users; both cases verify that the link goes to the proper URL. We'll put these tests in the
layout links test we created in Section 5.2.1; the result appears in Listing 9.25.

Listing 9.25 Tests for the signin/signout links on the site layout.
spec/requests/layout_links_ spec.rb

describe "Layout links" do

describe "when not signed in" do
it "should have a signin link" do
visit root_path
response.should have_selector("a", :href => signin_path,
:content => "Sign in")
end
end

describe "when signed in" do

before(:each) do
@user = Factory(:user)
visit signin_path
fill in :email, :with => @user.email
fill_in :password, :with => @user.password
click_button

end

it "should have a signout link" do
visit root_path
response.should have_selector("a", :href => signout_path,
:content => "Sign out")
end

it "should have a profile link"
end
end

9.4 Signing Out 359

Here the before (:each) block signs in by visiting the signin page and submitting a
valid email/password pair.'> We do this instead of using the test_sign_in function
from Listing 9.19 because test_sign_in doesn’t work inside integration tests for some
reason. (See Section 9.6 for an exercise to make an integration_sign_in function
for use in integration tests.)

The application code uses an if-then branching structure inside of Embedded Ruby,
using the signed_in? method defined in Listing 9.18:

<% if signed_in? %>

<1li><%= link_to "Sign out", signout_path, :method => :delete %></1li>
<% else %>

<1i><%= link_to "Sign in", signin_path $%></1i>

<% end %>

Notice that the signout link passes a hash argument indicating that it should submit with
an HTTP DELETE request.'® With this snippet added, the full header partial appears as
in Listing 9.26.

Listing 9.26 Changing the layout links for signed-in users.
app/views/layouts/_header.html.erb

<header>
<%= link_to logo, root_path %>
<nav class="round">

<1li><%= link_to "Home", root_path %></1li>
<1li><%= link_to "Help", help_path %></1i>
<% if signed_in? %>
<1li><%= link_to "Sign out", signout_path, :method => :delete %></1i>
<% else %>
<1li><%= link_to "Sign in", signin_path $%></1i>
<% end %>

</nav>
</header>

In Listing 9.26 we've used the 1ogo helper from the Chapter 5 exercises (Section 5.5);
in case you didn’t work that exercise, the answer appears in Listing 9.27.

12. Note that we can use symbols in place of strings for the labels, e.g., £i11_in :email instead of £i11_in
vEmail". We used the latter in Listing 8.22, but by now it shouldn’t surprise you that Rails allows us to use
symbols instead.

13. Web browsers can’t actually issue DELETE requests; Rails fakes it with JavaScript.

360 Chapter 9: Sign In, Sign Out

Listing 9.27 A helper for the site logo.
app/helpers/application helper.rb

module ApplicationHelper

def logo
image_tag("logo.png", :alt => "Sample App", :class => "round")
end
end

Finally, let’s add a profile link. The test (Listing 9.28) and application code
(Listing 9.29) are both straightforward. Notice that the profile link’s URL is simply
current_user,'* which is our first use of that helpful method. (It won’t be our last.)

Listing 9.28 A test for a profile link.
spec/requests/layout_links_ spec.rb

describe "Layout links" do

describe "when signed in" do

it "should have a profile link" do
visit root_path
response.should have_selector("a", :href => user_path(@user),
:content => "Profile")
end
end
end

Listing 9.29 Adding a profile link.
app/views/layouts/_header.html.erb

<header>
<%= link_to logo, root_path %>
<nav class="round">

14. Recall from Section 7.3.3 that we can link directly to a user object and allow Rails to figure out the
appropriate URL.

9.4 Signing Out 361

<1li><%= link_to "Home", root_path %></1li>
<% if signed_in? %>
<1li><%= link_to "Profile", current_user $%$></1li>
<% end %>
<1li><%= link_to "Help", help_path %></1li>
<% if signed_in? %>
<1li><%= link_to "Sign out", signout_path, :method => :delete %></1i>
<% else 3>
<1li><%= link_to "Sign in", signin_path $%></1i>
<% end %>

</nav>
</header>

With the code in this section, a signed-in user now sees both signout and profile
links, as expected (Figure 9.8).

000 s o st

L hitp | locaihast 1000/ wiers/ 1

Ruby on Rails Tutoria

Sample App

7 Rails Tutorial iy

‘map:HashWithindi1fferentAccess

sction: show
1e: "1°
controller. users

Figure 9.8 A signed-in user with signout and profile links.

362 Chapter 9: Sign In, Sign Out

9.4.4 Signin/Out Integration Tests

As a capstone to our hard work on authentication, we’ll finish with integration tests
for signin and signout (placed in the users_spec.rb file for convenience). RSpec
integration testing is expressive enough that Listing 9.30 should need little explanation;
Iespecially like theuse of e1ick_1link "Sign out",which notonlysimulatesabrowser
clicking the signout link, but also raises an error if no such link exists—thereby testing
the URL, the named route, the link text, and the changing of the layout links, all in one
line. If that’s not an integration test, I don’t know what is.

Listing 9.30 An integration test for signing in and out.
spec/requests/users_spec.rb

require 'spec_helper'

describe "Users" do

describe "signup" do

end

describe "sign in/out" do

describe "failure" do
it "should not sign a user in" do
visit signin_path
fill_in :email, :with => """
fill_in :password, :with => ""
click_button
response.should have_selector ("div.flash.error", :content => "Invalid")
end
end

describe "success" do
it "should sign a user in and out" do
user = Factory(:user)
visit signin_path
fill_in :email, :with => user.email
fill_in :password, :with => user.password
click_button
controller.should be_signed_in
click_link "Sign out"
controller.should _not be_signed_in

9.6 Exercises 363

end

end

end
end

9.5

Conclusion

We've covered a lot of ground in this chapter, transforming our promising but unformed

application into a site capable of the full suite of registration and login behaviors. All

that is needed to complete the authentication functionality is to restrict access to pages

based on signin status and user identity. We’ll accomplish this task en route to giving

users the ability to edit their information and giving administrators the ability to remove

users from the system.

Before moving on, merge your changes back into the master branch:

$ git
$ git
$ git
$ git

9.6

add .
commit -am "Done with sign in"
checkout master

merge sign-in-out

Exercises

The second and third exercises are more difficult than usual. Solving them will require

some outside research (e.g., Rails API reading and Google searches), and they can be

skipped without loss of continuity.

1. Several of the integration specs use the same code to sign a user in. Replace that

code with the integration_sign_in function in Listing 9.31 and verify that the

tests still pass.

2. Use session instead of cookies so that users are automatically signed out when

they close their browsers.}> Hint: Do a Google search on “Rails session”.

15. Somewhat confusingly, we’ve used cookies to implement sessions, and session is implemented with

cookies!

364 Chapter 9: Sign In, Sign Out

3. (Advanced) Some sites use secure HT'TP (HTTPS) for their signin pages. Search
online to learn how to use HTTPS in Rails, and then secure the Sessions controller
new and create actions. Hint: Take alook at the ss1_requirement plugin. Extra
challenge: Write tests for the HTTPS functionality. (Noze: I suggest doing this exercise
only in development, which does not require obtaining an SSL certificate or setting
up the SSL encryption machinery. Actually deploying an SSL-enabled site is much
more difficult.)

Listing 9.31 A function to sign users in inside of integration tests.
spec/spec_helper.rb

Rspec.configure do |config]|

def test_sign_in(user)
controller.sign_in(user)
end

def integration_sign_in(user)
visit signin_path
fill_in :email, :with => user.email
fill_in :password, :with => user.password
click_button
end
end

CHAPTER 10

Updating, Showing, and
Deleting Users

In this chapter, we will complete the REST actions for the Users resource (Table 6.2)
by adding edit, update, index, and destroy actions. We'll start by giving users the
ability to update their profiles, which will also provide a natural opportunity to enforce a
security model (made possible by the authentication code in Chapter 9). Then we’ll make
a listing of all users (also requiring authentication), which will motivate the introduction
of sample data and pagination. Finally, we’ll add the ability to destroy users, wiping
them clear from the database. Since we can’t allow just any user to have such dangerous
powers, we’ll take care to create a privileged class of administrative users (admins) along
the way.
To get started, let’s start work on an updating-users topic branch:

$ git checkout -b updating-users

10.1 Updating Users

The pattern for editing user information closely parallels that for creating new users
(Chapter 8). Instead of a new action rendering a view for new users, we have an edit
action rendering a view to edit users; instead of create responding to a POST request,
we have an update action responding to a PUT request (Box 3.1). The biggest difference
is that, while anyone can sign up, only the current user should be able to update their
information. This means that we need to enforce access control so that only authorized
users can edit and update; the authentication machinery from Chapter 9 will allow us
to use a before filter to ensure that this is the case.

365

366 Chapter 10: Updating, Showing, and Deleting Users

()

Edit user

Name
| Sasha Smith]

Email

| sasha@example.com |

Password

| W I

Confirmation

[|

Update

..
(

Figure 10.1 A mockup of the user edit page.

10.1.1 Edit Form

We start with tests for the edit form, whose mockup appears in Figure 10.1." Two are
analogous to tests we saw for the new user page (Listing 8.1), checking for the proper
response and title; the third test makes sure that there is a link to edit the user’s Gravatar
image (Section 7.3.2). If you poke around the Gravatar site, you'll see that the page to
add or edit images is (somewhat oddly) located at http: //gravatar.com/emails, so
we test the edit page for a link with that URL.? The result is shown in Listing 10.1.

1. Image from http://www.flickr.com/photos/sashawolft/4598355045/.

2. The Gravatar site actually redirects thistoht tp: //en.gravatar . com/emails, which is for English language
users, but I've omitted the en part to account for the use of other languages.

http://gravatar.com/emails
http://www.flickr.com/photos/sashawolff/4598355045/
http://en.gravatar.com/emails

10.1 Updating Users

Listing 10.1 Tests for the user edit action.
spec/controllers/users_controller_spec.rb

367

require 'spec_helper'

describe UsersController do

render_views

describe "GET 'edit'" do

before(:each) do
@user = Factory(:user)
test_sign_in(Quser)
end

it "should be successful" do
get :edit, :id => Quser
response.should be_success
end

it "should have the right title" do
get :edit, :id => Quser

response.should have_selector("title", :content => "Edit user")

end

it "should have a link to change the Gravatar" do
get :edit, :id => @Quser
gravatar_url = "http://gravatar.com/emails"
response.should have_selector("a", :href => gravatar_url,

:content => "change")
end
end
end

Here we’ve made sure to use test_sign_in(@user) tosignin as the user in anticipation

of protecting the edit page from unauthorized access (Section 10.2). Otherwise, these

tests would break as soon as we implemented our authentication code.

Note from Table 6.2 that the proper URL for a user’s edit page is /users/1/edit

(assuming the user’s id is 1). Recall that the id of the user is available in the params [: id]

variable, which means that we can find the user with the code in Listing 10.2. This uses

£ind to find the relevant user in the database, and then sets the @title variable to the

proper value.

368 Chapter 10: Updating, Showing, and Deleting Users

Listing 10.2 The user edit action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def edit

@Quser = User.find(params/[:id])
@title = "Edit user"
end
end

Getting the tests to pass requires making the actual edit view, shown in Listing 10.3.
Note how closely this resembles the new user view from Listing 8.2; the large overlap sug-
gests factoring the repeated code into a partial, which is left as an exercise (Section 10.6).

Listing 10.3 The user edit view.
app/views/users/edit.html.erb

<hl>Edit user</hl>

<%= form_for (Guser) do |f| %>
<%= render 'shared/error_messages', :0bject => f.object %>
<div class="field">
<%= f.label :name $%>

<%= f.text_field :name %>
</div>
<div class="field">
<%= f.label :email $%>

<%= f.text_field :email %>
</div>
<div class="field">
<%= f.label :password $>

<%= f.password_field :password %>
</div>
<div class="field">
<%= f.label :password_confirmation, "Confirmation" $%>

<%= f.password_field :password_confirmation %>
</div>
<div class="actions">
<%= f.submit "Update" %>
</div>
<% end %>

10.1 Updating Users 369

<div>

<%= gravatar_for @user %>

change
</div>

Here we have reused the shared error_messages partial introduced in Section 8.2.3.

You may recall from Listing 8.8 that the error-messages partial references the @user
variable explicitly. In the present case, we do happen to have an @user variable, but
in order to make this a truly shared partial we should not depend on this fact. The
solution is to pass the object corresponding to the form variable £ as a parameter to the
partial:

<%= render 'shared/error_messages', :object => f.object %>

This creates a variable called object in the partial, which we can then use to generate
the error messages, as shown in Listing 10.4. (Note the fancy chain of methods to get
a nice version of the object name; see the Rails API entry on, say, humanize, to get an
idea of the range of Rails utilities available.)

Listing 10.4 Updating the error-messages partial from Listing 8.9 to work with other objects.
app/views/shared/_error messages.html.erb

<% if object.errors.any? $>
<div id="error_explanation">
<h2><%= pluralize(object.errors.count, "error") %>
prohibited this <%= object.class.to_s.underscore.humanize.downcase $>
from being saved:</h2>
<p>There were problems with the following fields:</p>

<% object.errors.full_messages.each do |msg| $%>
<1li><%= msg %></1li>
<% end %>

</div>
<% end %>

While we’re at it, we'll update the signup form with the more general code (Listing 10.5).

370 Chapter 10: Updating, Showing, and Deleting Users

Listing 10.5 Updating the rendering of user signup errors.
app/views/users/new.html.erb

<hl>Sign up</hl>

<%= form_for (Guser) do |f| %>

<%= render 'shared/error_messages', :o0bject => f.object %>

<% end %>

We'll also add a link to the site navigation for the user edit page (which we’ll call
“Settings”), as mocked up in Figure 10.2> and shown in Listing 10.6.

Listing 10.6 Adding a Settings link.
app/views/layouts/_header.html.erb

<header>
<%= link_to logo, root_path %>
<nav class="round">

<1li><%= link_to "Home", root_path $%></1li>
<% if signed_in? %>
<1li><%= link _to "Profile", current_user $%></1li>
<%= link_to "Settings", edit_user_path(current_user) $%></1li>
<% end %>

</nav>
</header>

Here we use the named route edit_user_path from Table 6.2, together with the handy
current_user helper method defined in Listing 9.16.

With the @user instance variable from Listing 10.2, the tests from Listing 10.1 pass.
As seen in Figure 10.3, the new page renders, though it doesn’t yet work.

Looking at the HTML source for Figure 10.3, we see a form tag as expected
(Listing 10.7).

3. Image from http://www.flickr.com/photos/sashawolff/4598355045/.

http://www.flickr.com/photos/sashawolff/4598355045/

10.1 Updating Users 371

Sasha Smith Name Sasha Smith

URL [users/42

Figure 10.2 A mockup of the user profile page with a “Settings” link.

Listing 10.7 HTML for the edit form defined in Listing 10.3 and shown in Figure 10.3.

<form action="/users/1" class="edit_user" id="edit_user_1" method="post">
<input name="_method" type="hidden" value="put" />

</form>

Note here the hidden input field

<input name="_method" type="hidden" value="put" />

372 Chapter 10: Updating, Showing, and Deleting Users

S.a-mple App

Edit user

Name
Example User
Email

o1 ampiedr sy tutonal oeg

Password

Confirmation

aenn Rulry on Rails Tutonial Sample App | Edit user =

oD (e) hittp | flocalhost 3000/ users 1/ edit W 'n
M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

Figure 10.3 Editing user settings (/users/1/edit).

Since web browsers can’t natively send PUT requests (as required by the REST conventions
from Table 6.2), Rails fakes it with a POST request and a hidden input field.*

There’s another subtlety to address here: the code form_for (@user) in Listing 10.3
is exactly the same as the code in Listing 8.2—so how does Rails know to use a posT
request for new users and a PUT for editing users? The answer is that it is possible to tell
whether a user is new or already exists in the database via the new_record? boolean
method (which we saw briefly in Listing 7.10):

$ rails console

>> User.new.new_record?
=> true

>> User.first.new_ record?
=> false

4. Don’t be worried about how this works; the details are of interest to developers of the Rails framework itself,
but by design are not important for Rails application developers.

10.1 Updating Users 373

When constructing a form using form_for (@user), Rails uses POST if @user.new_-
record? is true and PUT if it is false.

10.1.2 Enabling Edits

Although the edit form doesn’t yet work, we’ve outsourced image upload to Gravatar,
so it works straightaway by clicking on the “change” link from Figure 10.3, as shown in
Figure 10.4. Let’s get the rest of the user edit functionality working as well.

The tests for the update action are similar to those for create. In particular, we
test both update failure and update success (Listing 10.8). (This is a lot of code; see if
you can work through it by referring back to the tests in Chapter 8.)

anon Gravatar - Globally Recognized Avatars ‘-

) i‘i RELD /e Gravalar COm/Qravatars /(rop/ a980 10MeT901a542¢07BAN I8 169 1e0

Choose any part of your image using the dotted box
below

Small Preview

]

The préviews above
represant what your néw
Gravatar image will Iook
like after chcking Crop

and Finish

Crop and Finish! K here for details

Figure 10.4 The Gravatar image-cropping interface, with a picture of some dude.

374 Chapter 10: Updating, Showing, and Deleting Users

Listing 10.8 Tests for the user update action.
spec/controllers/users_controller_spec.rb

describe UsersController do

render_views

describe "PUT ‘'update'" do

before(:each) do
@user = Factory(:user)
test_sign_in (Quser)
end

describe "failure" do

before(:each) do
Qattr = { :email => "", :name => "", :password => "",
:password_confirmation => "" }
end

it "should render the 'edit' page" do
put :update, :id => Quser, :user => Qattr
response.should render_template('edit')
end

it "should have the right title" do
put :update, :id => @Quser, :user => Q@attr
response.should have_selector("title", :content => "Edit user")
end
end

describe "success" do

before(:each) do

Qattr = { :name => "New Name", :email => "user@example.org",

:password => "barbaz", :password_confirmation => "barbaz"

end

it "should change the user's attributes" do
put :update, :id => @user, :user => Qattr
@Quser.reload

@Quser.name.should == @attr[:name]
Quser.email.should == @attr[:email]
end

it "should redirect to the user show page" do
put :update, :id => @Quser, :user => Qattr

10.1 Updating Users 375

response.should redirect_to(user_path (Quser))
end

it "should have a flash message" do
put :update, :1d => Quser, :user => Qattr
flash[:success].should =~ /updated/
end
end
end

end

The only novelty here is the reload method, which appears in the test for changing the
user’s attributes:

it "should change the user's attributes" do
@Quser.reload

@Quser.name.should == @attr[:name]
@Quser.email.should == @attr[:email]
end

This code reloads the @user variable from the (test) database using @user.reload, and
then verifies that the user’s new name and email match the attributes in the @attr hash.

The update action needed to get the tests in Listing 10.8 to pass is similar to the
final form of the create action (Listing 9.24), as seen in Listing 10.9.

Listing 10.9 The user update action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def update
@Quser = User.find(params[:id])
if @Quser.update_attributes (params|[:user])

flash[:success] = "Profile updated."
redirect_to @Quser
else
@title = "Edit user"
render 'edit'
end
end

end

376 Chapter 10: Updating, Showing, and Deleting Users

With that, the user edit page should be working. As currently constructed, every edit
requires the user to reconfirm the password (as implied by the empty confirmation text
box in Figure 10.3), which makes updates more secure but is a minor annoyance.

10.2 Protecting Pages

Although the edit and update actions from Section 10.1 are functionally complete, they
suffer from a ridiculous security flaw: they allow anyone (even non-signed-in users) to
access either action, and any signed-in user can update the information for any other
user.’ In this section, we’ll implement a security model that requires users to be signed
in and prevents them from updating any information other than their own. Users who
aren’t signed in and who try to access protected pages will be forwarded to the signin
page with a helpful message, as mocked up in Figure 10.5.

10.2.1 Requiring Signed-In Users

Since the security restrictions for the edit and update actions are identical, we’ll handle
them in a single RSpec describe block. Starting with the sign-in requirement, our
initial tests verify that non-signed-in users attempting to access either action are simply
redirected to the signin page, as seen in Listing 10.10.

Listing 10.10 The first tests for authentication.
spec/controllers/users_controller spec.rb

describe UsersController do

render_views

describe "authentication of edit/update pages" do
before(:each) do
@Quser = Factory(:user)
end

describe "for non-signed-in users" do

it "should deny access to 'edit'" do
get :edit, :id => @user

5. To be fair, they would need the user’s password, but if we ever made the password unnecessary (as planned
for the screencasts) it would open up a huge security hole.

10.2 Protecting Pages

response.should redirect_to(signin_path)

end

it "should deny access to 'update'" do
put :update, :1d => @Quser, :user => {}
response.should redirect_to(signin_path)
end
end
end
end

377

(Home

Help

)

Please sign in to access this page.

Sign in

Password

New user? Sign up now!

Figure 10.5 A mockup of the result of visiting a protected page.

378 Chapter 10: Updating, Showing, and Deleting Users

The application code gets these tests to pass using a before filter, which arranges
for a particular method to be called before the given actions. In this case, we define
an authenticate method and invoke it using before_filter :authenticate, as

shown in Listing 10.11.

Listing 10.11 Adding an authenticate before filter.
app/controllers/users_controller.rb

class UsersController < ApplicationController
before_filter :authenticate, :only => [:edit,

private

def authenticate
deny_access unless signed_in?
end
end

:update]

By default, before filters apply to everyaction in a controller, so here we restrict the filter
to act only on the :edit and :update actions by passing the :only options hash.
This code won’t work yet, because deny_access hasn’t been defined. Since access
denial is part of authentication, we’ll put it in the Sessions helper from Chapter 9. All
deny_access does is put a message in flash[:noticel and then redirect to the signin

page (Listing 10.12).

Listing 10.12 The deny_access method for user authentication.

app/helpers/sessions_helper.rb

module SessionsHelper

def deny_access

redirect_to signin_path, :notice => "Please sign in to access this page."

end
end

Note here that Listing 10.12 uses a shortcut for setting £1ash[:notice] by passing an
options hash to the redirect to function. The code in Listing 10.12 is equivalent to the

more verbose

10.2 Protecting Pages 379

Ruby on Rails Tutorisl Ssmple App | Sign in
Ihitp | hocalhait J000/ signin u .ﬂ

Sample App
Please sign in 1o access this page.
Sign in
Email

Password

New user? Sign uy

'mAD HASHWIERINATTTerentACEess

Figure 10.6 The signin form after trying to access a protected page.

flash[:notice] = "Please sign in to access this page."

redirect_to signin_path

(The same construction works for the :error key, but not for :success.)

Together with :success and :error, the :notice key completes our triumvirate
of flash styles, all of which are supported natively by Blueprint CSS. By signing out
and attempting to access the user edit page /users/1/edit, we can see the resulting

yellow "notice" box, as seen in Figure 10.6.

10.2.2 Requiring the Right User

Of course, requiring users to sign in isn’t quite enough; users should only be allowed to
edit their own information. We can test for this by first signing in as an incorrect user
and then hitting the edit and update actions (Listing 10.13). Note that, since users

380 Chapter 10: Updating, Showing, and Deleting Users
should never even #7y to edit another user’s profile, we redirect not to the signin page
but to the root url.

Listing 10.13 Authentication tests for signed-in users.
spec/controllers/users_controller_spec.rb

describe UsersController do

render_views

describe "authentication of edit/update pages" do

describe "for signed-in users" do

before(:each) do
wrong_user = Factory(:user, :email => "user@example.net"
test_sign_in(wrong_user)

end

it "should require matching users for 'edit'" do
get :edit, :id => Quser
response.should redirect_to (root_path)

end

it "should require matching users for 'update'" do
put :update, :1d => @Quser, :user => {}
response.should redirect_to (root_path)
end
end
end
end

The application code is simple: we add a second before filter to call the cor-
rect_user method (which we have to write), as shown in Listing 10.14.

Listing 10.14 A correct_user before filter to protect the edit/update pages.
app/controllers/users_controller.rb

class UsersController < ApplicationController
before_filter :authenticate, :only => [:edit, :update]
before_filter :correct_user, :only => [:edit, :update]

10.2 Protecting Pages 381

def edit
@title = "Edit user"
end

private

def authenticate
deny_access unless signed_in?
end

def correct_user
Quser = User.find(params[:id])
redirect_to(root_path) unless current_user? (Quser)
end
end

This uses the current_user? method, which (as with deny access) we define in
the Sessions helper (Listing 10.15).

Listing 10.15 The current_user? method.
app/helpers/sessions_helper.rb

module SessionsHelper

def current_user? (user)
user == current_user
end
def deny_access
redirect_to signin_path, :notice => "Please sign in to access this page."
end
private

end

Listing 10.14 also shows the updated edit action. Before, in Listing 10.2, we had

def edit
@Quser = User.find(params[:id])
@title = "Edit user"

end

382 Chapter 10: Updating, Showing, and Deleting Users

but now that the correct_user before filter defines @user we can omit it from the
edit action (and from the update action as well).

10.2.3 Friendly Forwarding

Our page protection is complete as written, but there is one minor blemish: when
users try to access a protected page, they are currently redirected to their profile pages
regardless of where they were trying to go. In other words, if a non-logged-in user tries
to visit the edit page, after signing in the user will be redirected to /users/1 instead
of /users/1/edit. It would be much friendlier to redirect them to their intended
destination instead.

The sequence of attempted page visitation, signin, and redirect to destination page
is a perfect job for an integration test, so let’s make one for friendly forwarding:

$ rails generate integration_test friendly_ forwarding

The code then appears as in Listing 10.16.

Listing 10.16 An integration test for friendly forwarding.
spec/requests/friendly forwardings_spec.rb

require 'spec_helper'

describe "FriendlyForwardings" do

it "should forward to the requested page after signin" do
user = Factory(:user)
visit edit_user_path (user)
The test automatically follows the redirect to the signin page.
fill_in :email, :with => user.email
fill_in :password, :with => user.password
click_button
The test follows the redirect again, this time to users/edit.
response.should render_template('users/edit')

end

end

(As indicated by the comments, the integration test fo/lows redirects, so testing that the
response should redirect_to some URL won’t work. I learned this the hard way.)

10.2 Protecting Pages 383

Now for the implementation.® In order to forward users to their intended destina-
tion, we need to store the location of the requested page somewhere, and then redirect
there instead. The storage mechanism is the session facility provided by Rails, which
you can think of as being like an instance of the cookies variable from Section 9.3.2
that automatically expires upon browser close.” We also use the request object to get
the request_uri, i.e., the URL of the requested page. The resulting application code
appears in Listing 10.17.

Listing 10.17 Code to implement friendly forwarding.
app/helpers/sessions_helper.rb

module SessionsHelper

def deny_access
store_location
redirect_to signin_path, :notice => "Please sign in to access this page."

end
def redirect_back_or (default)
redirect_to(session[:return_to] || default)

clear_return_to
end
private

def store_location
session[:return_to] = request.fullpath
end
def clear_return_to
session[:return_to] = nil
end
end

Here we've added a line to the deny_access method, first storing the full path of the
request with store_location and then proceeding as before. The store_location
method puts the requested URL in the session variable under the key :return_to.
(We've made both store_location and clear_return_to private methods since
they are never needed outside the Sessions helper.)

6. The code in this section is adapted from the Clearance gem by thoughtbot.

7. Indeed, as noted in Section 9.6, session is implemented in just this way.

384 Chapter 10: Updating, Showing, and Deleting Users

We've also defined the redirect_back_or method to redirect to the requested
URL if it exists, or some default URL otherwise. This method is needed in the Sessions
controller ereate action to redirect after successful signin (Listing 10.18).

Listing 10.18 The Sessions create action with friendly forwarding.
app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def create
user = User.authenticate(params|:session][:email]
params [:session] [:password])
if user.nilv?
flash.now[:error] = "Invalid email/password combination."
@title = "Sign in"
render 'new'
else
sign_in user
redirect_back_or user
end
end

end

With that, the friendly forwarding integration test in Listing 10.16 should pass, and
the basic user authentication and page protection implementation is complete.

10.3 Showing Users

In this section, we’ll add the penultimate user action, the index action, which is designed
to display 4/l the users, not just one. Along the way, we’ll learn about populating the
database with sample users and paginating the user output so that the index page can
scale up to display a potentially large number of users. A mockup of the result—users,
pagination links, and a “Users” navigation link—appears in Figure 10.7.% In Section 10.4,
we'll add an administrative interface to the user index so that (presumably troublesome)

users can be destroyed.

8. Baby photo from http://www.flickr.com/photos/glasgows/338937124/.

http://www.flickr.com/photos/glasgows/338937124/

10.3 Showing Users 385

All users
=1 [J 0 =

Sasha Smith

Hippo Potamus

zm

Dawd Jones

IPrﬁ\musI I| I IZ I IB I Il\'o:tl

)

Figure 10.7 A mockup of the user index, with pagination and a ““Users’’ nav link.

=

10.3.1 User Index

Although we’ll keep individual user show pages visible to all site visitors, the user index
will be restricted to signed-in users so that there’s a limit to how much unregistered users
can see by default. Our index tests check for this, and also verify that for signed-in users

all the site’s users are listed (Listing 10.19).

Listing 10.19 Tests for the user index page.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe UsersController do

386 Chapter 10: Updating, Showing, and Deleting Users

render_views
describe "GET 'index'" do

describe "for non-signed-in users" do
it "should deny access" do
get :index
response.should redirect_to(signin_path)
flash[:notice].should =~ /sign in/i
end
end

describe "for signed-in users" do
before(:each) do

@Quser = test_sign_in(Factory(:user))
second = Factory(:user, :email => "another@example.com")

third = Factory(:user, :email => "another@example.net"
@Qusers = [@user, second, third]
end

it "should be successful" do
get :index
response.should be_success
end

it "should have the right title" do

get :index

response.should have_selector("title", :content => "All users")
end

it "should have an element for each user" do
get :index
@users.each do |user|

response.should have_selector("1li", :content => user.name)

end

end

end
end

end

As you can see, the method for checking the index page is to make three factory users
(signing in as the first one) and then verify that the index page has a list element (14)
tag for the name of each one.

10.3 Showing Users 387
As expected, the application code uses User.all to make an @users instance
variable in the index action of the Users controller (Listing 10.20).

Listing 10.20 The user index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController
before_filter :authenticate, :only => [:index, :edit, :update]

def index
@title = "All users"
@users = User.all
end

def show
@Quser = User.find(params[:id])
@title = @user.name

end

end

Note thatwe have added : index to the list of controllers protected by the authenticate
before filter, thereby getting the first test from Listing 10.19 to pass.

To make the actual page, we need to make a view that iterates through the users
and wraps each one in an 1i tag. We do this with the each method, displaying each
user’s Gravatar and name, while wrapping the whole thing in an unordered list (ul) tag
(Listing 10.21).

Listing 10.21 The user index view.
app/views/users/index.html.erb

<h1>All users</hl>

<ul class="users">
<% @users.each do |user| %>
<1li>
<%= gravatar_for user, :size => 30 %>
<%= link_to user.name, user $%>
</1i>
<% end %>

388 Chapter 10: Updating, Showing, and Deleting Users

We'll then add a little CSS for style (Listing 10.22).

Listing 10.22 CSS for the user index.
public/stylesheets/custom.css

ul.users {
margin-top: lem;

.users 1li {
list-style: none;

Finally, we’ll add a “Users” link to the site’s navigation header (Listing 10.23). This
puts to use the users_path named route from Table 6.2.

Listing 10.23 A layout link to the user index.
app/views/layouts/_header.html.erb

<header>
<%= link_to logo, root_path %>
<nav class="round">

<%= link_to "Home", root_path %></1li>
<% if signed_in? %>
<%= link_to "Users", users_path %></1li>
<1li><%= link _to "Profile", current_user $%></1li>
<%= link_to "Settings", edit_user_path(current_user) $%></1li>
<% end %>

</nav>
</header>

With that, the user index is fully functional (with all tests passing), but it is a
bit. . . lonely (Figure 10.8).

10.3 Showing Users 389

anon Ruby on Rails Tutorial Sample App | All users =
op_@ L 2 Pt | /locaibatt 000 usery i 'ﬂ
Sample App
All users
7:!'.":".."

map: HashWithindifferentAccess
action: index
controller: users

Figure 10.8 The user index page /users with only one user.

10.3.2 Sample Users

In this section, we’ll give our lonely sample user some company. Of course, to create
enough users to make a decent user index, we could use our web browser to visit the
signup page and make the new users one by one, but a far better solution is to use Ruby
(and Rake) to make the users for us.

First, we'll add the Faker gem to the Gemfile, which will allow us to make sample
users with semi-realistic names and email addresses (Listing 10.24).

Listing 10.24 Adding the Faker gem to the Gemfile.

source 'http://rubygems.org’

group :development do

http://rubygems.org

390 Chapter 10: Updating, Showing, and Deleting Users

gem 'rspec-rails', '2.0.1'
gem 'annotate-models', '1.0.4'
gem 'faker', '0.3.1"

end

Then install as usual:

$ bundle install

Next, we'll add a Rake task to create sample users. Rake tasks live in 1ib/tasks,
and are defined using namespaces (in this case, :db), as seen in Listing 10.25.

Listing 10.25 A Rake task for populating the database with sample users.
lib/tasks/sample_data.rake

require 'faker'

namespace :db do
desc "Fill database with sample data"
task :populate => :environment do
Rake::Task['db:reset'].invoke
User.create! (:name => "Example User",
:remail => "example@railstutorial.org",
:password => "foobar",
:password_confirmation => "foobar")
99.times do |n|

name = Faker::Name.name
email = "example-#{n+l}@railstutorial.org"
password = "password"

User.create! (:name => name,
:email => email,
:password => password,
:password_confirmation => password)
end
end
end

This defines a task db:populate that resets the development database using db: reset
(using slightly weird syntax you shouldn’t worry about too much), creates an example

10.3 Showing Users 391

user with name and email address replicating our previous one, and then makes 99 more.
The line

task :populate => :environment do

ensures that the Rake task has access to the local Rails environment, including the User
model (and hence User.create!).
With the :db namespace as in Listing 10.25, we can invoke the Rake task as follows:

$ rake db:populate

After running the Rake task, our application has 100 sample users, as seen in
Figure 10.9. (I've taken the liberty of associating the first few sample addresses with
photos so that they’re not all the default Gravatar image.)

ann Ruby on Rails Tutornal Sample App | All users =
rmu | Nocalhast 3000/ uiers AP
Sample App
All users
P campie

slelclelelelelel [-1]

Figure 10.9 The user index page /users with 100 sample users.

392 Chapter 10: Updating, Showing, and Deleting Users

10.3.3 Pagination

Having solved the problem of too few sample users, we now encounter the opposite
problem: having too many users on a page. Right now there are a hundred, which is
already a reasonably large number, and on a real site it could be thousands. The solution
is to paginate the users, so that (for example) only 30 show up on a page at any one time.

There are several pagination methods in Rails; we'll use one of the simplest and
most robust, called will_paginate. To use it, we need to update the Gemfile as usual
(Listing 10.20).

Listing 10.26 Includingwill_paginate in the Gemfile.

source 'http://rubygems.org'

gem 'rails', '3.0.0'

gem 'sglite3-ruby', '1.2.5', :require => 'sglite3'
gem 'gravatar_image_tag', '0.1.0°'

gem 'will_paginate', '3.0.pre2’'

Then bundle install:

$ bundle install

With will paginate installed, we are now ready to paginate the results of find-
ing users. We'll start by adding the special will paginate method in the view
(Listing 10.27); we'll see in a moment why the code appears both above and below
the user list.

Listing 10.27 The user index with pagination.
app/views/users/index.html.erb

<h1>A11 users</hl>
<%= will_paginate %>

<ul class="users">
<% @Qusers.each do |user| %>
<1li>
<%= gravatar_for user, :size => 30 %>
<%= link_to user.name, user $%>
</1li>

http://rubygems.org

10.3 Showing Users 393

<% end %>

<%= will_paginate $%>

Thewill paginate method isalittle magical; inside ausers view, itautomatically
looks for an @users object, and then displays pagination links to access other pages. The
view in Listing 10.27 doesn’t work yet, though, because currently @users contains the
results of User.all (Listing 10.20), which is of class Array, whereas will_paginate
expects an object of class WillPaginate: :Collection. Happily, this is just the kind
of object returned by the paginate method supplied by the will_paginate gem:

$ rails console

>> User.all.class

=> Array

>> User.paginate(:page => 1) .class
=> WillPaginate::Collection

Note that paginate takes a hash argument with key :page and value equal to the page
requested. User.paginate pulls the users out of the database one chunk at a time (30
by default), based on the :page parameter. So, for example, page 1 is users 1-30, page 2
is users 31-60, etc.

We can paginate the users in the sample application by using paginate in place
of all in the index action (Listing 10.28). Here the :page parameter comes from

params [:pagel, which is generated automatically by will_paginate.

Listing 10.28 Paginating the users in the index action.
app/controllers/users_controller.rb

class UsersController < ApplicationController
before_filter :authenticate, :only => [:index, :edit, :update]

def index

@title = "All users"

@users = User.paginate(:page => params/|:pagel)
end

end

394 Chapter 10: Updating, Showing, and Deleting Users

anon Ruby on Rails Tutonal Sample App | All users r

%
a4 e }= " it | [hocathost 3000/ wiers ED
™

Sample App

All users

+ Previous 1

dEEEEEEEXEESN

Figure 10.10 The user index page /users with pagination.

The user index page should now be working, appearing as in Figure 10.10; because
we included will_paginate both above and below the user list, the pagination links
appear in both places.

If you now click on either the 2 link or Next link, you’ll get the second page of
results, as shown in Figure 10.11.

Testing Pagination

Testing pagination requires detailed knowledge of how will_paginate works, so we
did the implementation first, but it’s still a good idea to test it. To do this, we need to
invoke pagination in a test, which means making more than 30 (factory) users.

As before, we'll use Factory Girl to simulate users, but immediately we have a
problem: user email addresses must be unique, which would appear to require creating
more than 30 users by hand—a terribly cumbersome job. Fortunately, Factory Girl
anticipates this issue, and provides sequences to solve it, as shown in Listing 10.29.

10.3 Showing Users 395

ann Ruby on Rails Tutorial Sample App | All users =

hitp [lecalhost 3000 usersToage =2 "B

Ruby on Raills Tutoria

Sample App

All users

2

JEEEEEEEEEEEE

Figure 10.11 Page 2 of the user index (/users?page=2).

Listing 10.29 Defining a Factory Girl sequence.
spec/factories.rb

Factory.define :user do |user|

user.name "Michael Hartl"
user.email "mhartl@example.com"
user.password "foobar"

user.password_confirmation "foobar"

end

Factory.sequence :email do |n|
"person-#{n}@example.com"
end

This arranges to return email addresses like person-1@example.com, person-
2@example.com, ctc., which we invoke using the next method:

396 Chapter 10: Updating, Showing, and Deleting Users

Factory(:user, :email => Factory.next(:email))

Applying the idea of factory sequences, we can make 31 users (the original @user
plus 30 more) inside a test, and then verify that the response has the HTML expected
from will paginate (which you should be able to determine using Firebug or by
viewing the page source). The result appears in Listing 10.30.

Listing 10.30 A test for pagination.
spec/controllers/users_controller_spec.rb

require 'spec_helper'

describe "UsersController" do

render_views

describe "GET 'index'" do

describe "for signed-in users" do

before(:each) do

@Qusers = [@user, second, third]
30.times do
@Qusers << Factory(:user, :email => Factory.next(:email))
end
end

it "should have an element for each user" do
get :index
@users[0..2].each do |user|
response.should have_selector("1li", :content => user.name)
end
end

it "should paginate users" do
get :index
response.should have_selector ("div.pagination")
response.should have_selector ("span.disabled", :content => "Previous")
response.should have_selector("a", :href => "/users?page=2",
:content => "2")

10.3 Showing Users 397

response.should have_selector("a", :href => "/users?page=2",

:content => "Next")
end

end
end

end

This code ensures that the tests invoke pagination by adding 30° users to the @users

variable using the array push notation <<, which appends an element to an existing
array:

$ rails console

>> a = [1, 2, 5]

=> [1, 2, 5]

>> a << 17

=> [1, 2, 5, 17]

>> a << 42 << 1337

=> [1, 2, 5, 17, 42, 1337]

We see from the last example that occurrences of << can be chained. In the test itself,
note the compact notation have_selector ("div.pagination"), which borrows the
class convention from CSS (first seen in Listing 5.3) to check for a div tag with class
pagination. Also note that, since there are now 33 users, we’ve updated the user element

test to use only the first three elements ([0..21) of the @users array, which is what we
had before in Listing 10.19:

@users([0..2].each do |user|

response.should have_selector ("1i",
end

:content => user.name)

With that, our pagination code is well-tested, and there’s only one minor detail left,
as we'll see in the next section.

9. Technically, we only need to create 28 additional factory users since we already have three, but I find the
meaning clearer if we create 30 instead.

398 Chapter 10: Updating, Showing, and Deleting Users

10.3.4 Partial Refactoring

The paginated user index is now complete, but there’s one improvement I can’t resist
including: Rails has some incredibly slick tools for making compact views, and in this
section we'll refactor the index page to use them. Because our code is well-tested, we can
refactor with confidence, assured that we are unlikely to break our site’s functionality.

The first step in our refactoring is to replace the user 14 from Listing 10.27 with a
render call (Listing 10.31).

Listing 10.31 The first refactoring attempt at the index view.
app/views/users/index.html.erb

<h1>All users</hl>
<%= will_paginate %>

<ul class="users">
<% @users.each do |user| %>
<%= render user %>
<% end 3>

<%= will_paginate %>

Here we call render not on a string with the name of a partial, but rather on a user

1

variable of class user;!? in this context, Rails automatically looks for a partial called

_user.html.erb, which we must create (Listing 10.32).

Listing 10.32 A partial to render a single user.
app/views/users/_user.html.erb

<1li>
<%= gravatar_for user, :size => 30 %>
<%= link_to user.name, user $%>

</1i>

This is a definite improvement, but we can do even better: we can call render
directly on the @users variable (Listing 10.33).

10. The name user is immaterial—we could have written @users.each do |foobar| and then used render
foobar. The key is the class of the object—in this case, User.

10.4 Destroying Users 399

Listing 10.33 The fully refactored user index.
app/views/users/index.html.erb

<h1>Al11l users</hl>
<%= will_paginate %>
<ul class="users">

<%= render @users %>

<%= will_paginate %>

Here Rails infers that @users is an list of User objects; moreover, when called with
a collection of users, Rails automatically iterates through them and renders each one
with the _user.html.erb partial. The result is the impressively compact code in

Listing 10.33.

10.4 Destroying Users

Now that the user index is complete, there’s only one canonical REST action left:
destroy. In this section, we’ll add links to delete users, as mocked up in Figure 10.12,
and define the destroy action necessary to accomplish the deletion. But first, we’ll
create the class of administrative users authorized to do so.

10.4.1 Administrative Users

We will identify privileged administrative users with a boolean admin attribute in the
User model, which will lead to an admin? method to test for admin status. We can write
tests for this attribute as in Listing 10.34.

Listing 10.34 Tests for an admin attribute.
spec/models/user_spec.rb

describe "admin attribute" do

before(:each) do
@Quser = User.create! (@Qattr)
end

400 Chapter 10: Updating, Showing, and Deleting Users

it "should respond to admin" do
@Quser.should respond_to(:admin)
end

it "should not be an admin by default" do
@Quser.should_not be_admin

end

it "should be convertible to an admin" do
@Quser.toggle! (:admin)
@Quser.should be_admin
end
end
end

All users
=1 1 1 CJ =]

Sasha Smith | delete

4 Hippo Potamus | delete

David Jones | delete

o
E

IPmmus||1IIZII3IINﬂII

N
/

Figure 10.12 A mockup of the user index with delete links.

10.4 Destroying Users 401

Here we've used the toggle! method to flip the admin attribute from true to false.
Also note that the line

@Quser.should be_admin

implies (via the RSpec boolean convention) that the user should have an admin? boolean
method.
We add the admin attribute with a migration as usual, indicating the boolean type

on the command line:

$ rails generate migration add_admin_ to_users admin:boolean
The migration simply adds the admin column to the users table (Listing 10.35),
yielding the data model in Figure 10.13.

Listing 10.35 The migration to add a boolean admin attribute to users.
db/migrate/<timestamp>_add_admin_to_users.rb

class AddAdminToUsers < ActiveRecord::Migration
def self.up
add_column :users, :admin, :boolean, :default => false
end

def self.down
remove_column :users, :admin
end
end

users
id integer
name string
email string
encrypted_password string
salt string
remember_token string
admin boolean
created_at datetime
updated_at datetime

Figure 10.13 The User model with an added admin boolean attribute.

402 Chapter 10: Updating, Showing, and Deleting Users

Note that we've added the argument :default => false to add_column in
Listing 10.35, which means that users will 7oz be administrators by default. (Without
the :default => false argument, admin will be ni1 by default, which is still £a1se,
so this step is not strictly necessary. It is more explicit, though, and communicates our
intentions more clearly both to Rails and to readers of our code.)

Finally, we migrate the development database and prepare the test database:

$ rake db:migrate
$ rake db:test:prepare

As expected, Rails figures out the boolean nature of the admin attribute and auto-
matically adds the question-mark method admin?:'!

$ rails console

>> user = User.first

>> user.admin?

=> false

>> user.password = "foobar"
>> user.toggle! (:admin)

=> true

>> user.admin?

=> true

As a final step, let’s update our sample data populator to make the first user an admin

(Listing 10.306).

Listing 10.36 The sample data populator code with an admin user.
lib/tasks/sample_data.rake

require 'faker'

namespace :db do
desc "Fill database with sample data"
task :populate => :environment do
Rake: :Task['db:reset'].invoke
admin = User.create! (:name => "Example User",

11. The toggle! method invokes the Active Record callbacks but not the validations, so we have to set the
password attribute (but not the confirmation) in order to have a non-blank password in the encrypt_password

callback.

10.4 Destroying Users 403

:email => "example@railstutorial.org",

:password => "foobar",

:password_confirmation => "foobar")
admin.toggle! (:admin)

end
end

Finally, re-run the populator to reset the database and then rebuild it from scratch:

$ rake db:populate

Revisiting attr_accessible

You might have noticed that Listing 10.36 makes the user an admin with tog-
gle! (:admin), but why not just add :admin => true to the initialization hash? The
answer is, it won’t work, and this is by design: only attr_accessible attributes can be
assigned through mass assignment, and the admin attribute isn’t accessible. Listing 10.37
reproduces the most recent list of attr_accessible attributes—note that :admin is

not on the list.

Listing 10.37 The attr_accessible attributes for the User model without an :admin attribute.
app/models/user.rb

class User < ActiveRecord::Base
attr_accessor :password

attr_accessible :name, :email, :password, :password_confirmation

end

Explicitly defining accessible attributes is crucial for good site security. If we omitted

the attr_accessible list in the User model (or foolishly added :admin to the list), a

malicious user could send a PUT request as follows:'?

12. Command-line tools such as curl (seen in Box 3.2) can issue PUT requests of this form.

404 Chapter 10: Updating, Showing, and Deleting Users

put /users/l17?admin=1

This request would make user 17 an admin, which could be a potentially serious se-
curity breach, to say the least. Because of this danger, it is a good practice to define

attr_accessible for every model.

10.4.2 The destroy Action

The final step needed to complete the Users resource is to add delete links and a
destroy action. We'll start by adding a delete link for each user on the user index
page (Listing 10.38).

Listing 10.38 User delete links (viewable only by admins).
app/views/users/_user.html.erb

<1li>
<%= gravatar_for user, :size => 30 %>
<%= link_to user.name, user %>
<% if current_user.admin? $>
| <%= link_to "delete", user, :method => :delete, :confirm => "You sure?",
:title => "Delete #{user.name}" $%>
<% end 3>
</1i>

Note the :method => :delete argument, which arranges for the link to issue the
necessary DELETE request. We've also wrapped each link inside an if statement so that
only admins can see them. The result for our admin user appears in Figure 10.14.

Web browsers can’t send DELETE requests natively, so Rails fakes them with
]avaScript.13 To get the delete links to work, we therefore have to include the default
Rails JavaScript libraries, which we do by adding the line

<%= javascript_include_tag :defaults %>

to the site layout. The result is shown in Listing 10.39.

13. This means that the delete links won’t work if the user has JavaScript disabled. If you must support non-
JavaScript-enabled browsers you can fake a DELETE request using a form and a POST request, which works even
without JavaScript; see the Railscast on Destroy Without JavaScript for details.

10.4 Destroying Users

800 e

hetp | flocaihest 3000 /users

Ruby on Ralls Tutorial

Sample App

All users

« Previous !

f’ Example User | delete

-
]
H
- |
Q.
©..
©
©
.
Q.
O

Figure 10.14 The user index /users with delete links.

Listing 10.39 Adding the default JavaScript libraries to the sample app.
app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title><%= title $%></title>
<%= csrf_meta_tag %>
<%= render 'layouts/stylesheets' $£>
<%= javascript_include_tag :defaults %>
</head>
<body>

</body>
</html>

406 Chapter 10: Updating, Showing, and Deleting Users

Even though only admins can see the delete links, there’s still a terrible security
hole: any sufficiently sophisticated attacker could simply issue DELETE requests from
the command line and delete any user on the site. To secure the site properly, we also
need access control, so our tests should check not only that admins can delete users, but
also that other users can’r. The results appear in Listing 10.40. Note that, in analogy
with the get, post, and put methods, we use delete to issue DELETE requests inside
of tests.

Listing 10.40 Tests for destroying users.
spec/controllers/users_controller_spec.rb

describe UsersController do

render_views

describe "DELETE 'destroy'" do

before(:each) do
@user = Factory(:user)
end

describe "as a non-signed-in user" do
it "should deny access" do
delete :destroy, :id => @user
response.should redirect_to(signin_path)
end
end

describe "as a non-admin user" do
it "should protect the page" do
test_sign_in(@Quser)
delete :destroy, :id => @user
response.should redirect_to (root_path)
end
end

describe "as an admin user" do
before(:each) do
admin = Factory(:user, :email => "admin@example.com", :admin => true)
test_sign_in(admin)

end

it "should destroy the user" do

10.4 Destroying Users

lambda do
delete :destroy, :id => @user
end.should change(User, :count).by(-1)
end

it "should redirect to the users page" do
delete :destroy, :id => @user
response.should redirect_to (users_path)
end
end
end
end

407

(You might notice that we’ve set an admin user using :admin => true; user factories

are not bound by the rules of attr_accessible parameters.) Note here that the change

method can take a negative value, which means that, just as we verified user creation by

testing for a change of +1 (Listing 8.14), we can verify user destruction by testing for a

change of -1:

lambda do
delete :destroy, :id => Quser
end.should change(User, :count).by(-1)

As you might suspect by now, the implementation uses a before filter, this time to

restrict access to the destroy action to admins. The destroy action itself finds the

user, destroys it, and then redirects to user index (Listing 10.41).

Listing 10.41 A before filter restricting the destroy action to admins.

app/controllers/users_controller.rb

class UsersController < ApplicationController
before_filter :authenticate, :only => [:index,
before_filter :correct_user, :only => [:edit,
before_filter :admin_user, :only => :destroy

def destroy
User.find(params|[:1id]) .destroy
flash[:success] = "User destroyed."

:edit, :update,
:update]

:destroy]

408 Chapter 10: Updating, Showing, and Deleting Users

redirect_to users_path
end

private

def admin_user
redirect_to(root_path) unless current_user.admin?
end
end

Note that the destroy action uses method chaining (seen briefly in Section 4.2.3) in the
line

User.find(params|[:1d]) .destroy

which saves a line of code.
At this point, all the tests should be passing, and the Users resource—with its
controller, model, and views—is functionally complete.

10.5 Conclusion

We've come a long way since introducing the Users controller way back in Section 5.3.
Those users couldn’t even sign up; now users can sign up, sign in, sign out, view their
profiles, edit their settings, and see an index of all users—and some can even destroy
other users.

The rest of this book builds on the foundation of the Users resource (and associated
authentication system) to make a site with Twitter-like microposts (Chapter 11) and
user following (Chapter 12). These chapters will introduce some of the most powerful
features of Rails, including data modeling with has_many and has_many :through.

Before moving on, be sure to merge all the changes into the master branch:

$ git add .

$ git commit -am "Done with user edit/update, index, and destroy actions"
$ git checkout master

$ git merge updating-users

10.6 Exercises 409

I¢’s also worth noting that this chapter saw the last of the necessary gem installations.
For reference, the final Gemfile is shown in Listing 10.42.

Listing 10.42 The final Gem£file for the sample application.

source 'http://rubygems.org'

gem 'rails', '3.0.0°'

gem 'sglite3-ruby', '1.2.5', :require => 'sglite3’
gem 'gravatar_image_tag', '0.1.0"'

gem 'will_paginate', '3.0.pre2’

group :development do

gem 'rspec-rails', '2.0.1"'
gem 'annotate-models', '1.0.4'
gem 'faker', '0.3.1°'

end

group :test do

gem 'rspec', '2.0.1"

gem 'webrat', '0.7.1°'

gem 'spork', '0.8.4'

gem 'factory_girl_rails', '1.0°'
end

10.6 Exercises

1. Arrange for the Gravatar “change” link in Listing 10.3 to open in a new window
(or tab). Hint: Search the web; you should find one particularly robust method
involving something called _blank.

2. Remove the duplicated form code by refactoring the new.html.erb and
edit.html.erb views to use the partial in Listing 10.43. Note that you will have
to pass the form variable £ explicitly as a local variable, as shown in Listing 10.44.

3. Signed-in users have no reason to access the new and create actions in the Users
controller. Arrange for such users to be redirected to the root url if they do try to
hit those pages.

4. Add tests to check that the delete links in Listing 10.38 appear for admins but not
for normal users.

5. Modify the destroy action to prevent admin users from destroying themselves.
(Write a test first.)

http://rubygems.org

410 Chapter 10: Updating, Showing, and Deleting Users

Listing 10.43 A partial for the new and edit form fields.
app/views/users/_fields.html.erb

<%= render 'shared/error_messages', :o0bject => f.object %>
<div class="field">
<%= f.label :name $%>

<%= f.text_field :name %>
</div>
<div class="field">
<%= f.label :email $%>

<%= f.text_field :email %>
</div>
<div class="field">
<%= f.label :password $%$>

<%= f.password_field :password %>
</div>
<div class="field">
<%= f.label :password_confirmation, "Confirmation" $%>

<%= f.password_field :password_confirmation $%>
</div>

Listing 10.44 The new user view with partial.
app/views/users/new.html.erb

<hl>Sign up</hi1l>

<%= form_for (@user) do |f| %>
<%= render 'fields', :f => f %>
<div class="actions">
<%= f.submit "Sign up" %>
</div>

<% end %>

CHAPTER 11
User Microposts

Chapter 10 saw the completion of the REST actions for the Users resource, so the time
has finally come to add a second resource: user microposts.! These are short messages
associated with a particular user, first seen in larval form in Chapter 2. In this chapter,
we will make a full-strength version of the sketch from Section 2.3 by constructing
the Micropost data model, associating it with the User model using the has_many and
belongs_to methods, and then making the forms and partials needed to manipulate
and display the results. In Chapter 12, we will complete our tiny Twitter clone by adding
the notion of following users in order to receive a feed of their microposts.
If you’re using Git for version control, I suggest making a topic branch as usual:

$ git checkout -b user-microposts

11.1 A Micropost Model

We begin the Microposts resource by creating a Micropost model, which captures the
essential characteristics of microposts. What follows builds on the work from Section 2.3;
as with the model in that section, our new Micropost model will include data validations
and an association with the User model. Unlike that model, the present Micropost model
will be fully tested, and will also have a default ordering and automatic destruction if its

parent user is destroyed.

1. Technically, we treated sessions as a resource in Chapter 9, but they are not saved to the database the way

users and microposts are.

411

412 Chapter 11: User Microposts

11.1.1 The Basic Model

The Micropost model needs only two attributes: a content attribute to hold the micro-
post’s content,” and a user_id to associate a micropost with a particular user. As with
the case of the User model (Listing 6.1), we generate it using generate model:

$ rails generate model Micropost content:string user_id:integer

This produces a migration to create a microposts table in the database
(Listing 11.1); compare it to the analogous migration for the users table from
Listing 6.2.

Listing 11.1 The Micropost migration. (Note the index on user_id.)
db/migrate/<timestamp>_create_microposts.rb

class CreateMicroposts < ActiveRecord::Migration
def self.up
create_table :microposts do |t
t.string :content
t.integer :user_id

t.timestamps
end
add_index :microposts, :user_id
end

def self.down
drop_table :microposts
end
end

Note that, since we expect to retrieve all the microposts associated with a given user id,
Listing 11.1 adds an index (Box 6.2) on the user_id column:

add_index :microposts, :user_id

Note also the t . timestamps line, which (as mentioned in Section 6.1.1) adds the magic
created_at and updated_at columns. We'll put the created_at column to work in
Section 11.1.3 and Section 11.2.1.

2. The content attribute will be a string, but, as noted briefly in Section 2.1.2, for longer text fields you
should use the text data type.

11.1 A Micropost Model 413

microposts
id integer
content string
user_id integer
created_at datetime
updated_at datetime

Figure 11.1 The Micropost data model.

We can run the microposts migration as usual (taking care to prepare the test database
since the data model has changed):

$ rake db:migrate
$ rake db:test:prepare

The result is a Micropost model with the structure shown in Figure 11.1.

Accessible Attribute
Before fleshing out the Micropost model, it’s important first to use attr_accessible
to indicate the attributes editable through the web. As discussed in Section 6.1.2 and
Section 10.4.1.1, failing to define accessible attributes means that anyone could change
any aspect of a micropost object simply by using a command-line client to issue mali-
cious requests. For example, a malicious user could change the user_id attributes on
microposts, thereby associating microposts with the wrong users.

In the case of the Micropost model, there is only one attribute that needs to be
editable through the web, namely, the content attribute (Listing 11.2).

Listing 11.2 Making the content attribute (and only the content attribute) accessible.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base
attr_accessible :content
end

Sinceuser_id isntlisted as an attr_accessible parameter, it can’t be edited through

the web, because a user_id parameter in a mass assignment such as

Micropost.new(:content => "foo bar", :user_id => 17)

will simply be ignored.

414 Chapter 11: User Microposts
The attr_accessible declaration in Listing 11.2 is necessary for site security, but
it introduces a problem in the default Micropost model spec (Listing 11.3).

Listing 11.3 The initial Micropost spec.
spec/models/micropost_spec.rb

require 'spec_helper'

describe Micropost do

before(:each) do
@attr = {
:content => "value for content",
:user_id => 1
}

end

it "should create a new instance given valid attributes" do
Micropost.create! (Qattr)
end
end

This test currently passes, but there’s something fishy about it. (See if you can figure out
what before proceeding.)

The problem is that the before(:each) block in Listing 11.3 assigns the user
id through mass assignment, which is exactly what attr_accessible is designed to
prevent; in particular, as noted above, the :user_id => 1 part of the initialization hash
is simply ignored. The solution is to avoid using Micropost .new directly; instead, we
will create the new micropost through its association with the User model, which sets the
user id automatically. Accomplishing this is the task of the next section.

11.1.2 User/Micropost Associations

The goal of this section is to establish an association between the Micropost model and
the User model—a relationship seen briefly in Section 2.3.3 and shown schematically
in Figure 11.2 and Figure 11.3. Along the way, we’ll write tests for the Micropost
model that, unlike Listing 11.3, are compatible with the use of attr_accessible in
Listing 11.2.

We start with tests for the Micropost model association. First, we want to replicate the
Micropost.create! test shown in Listing 11.3 without the invalid mass assignment.
Second, we see from Figure 11.2 that amicropost object should have a user method.

11.1 A Micropost Model 415

micropost.user

user
id name email
1 Michael Hartl | mhartl@example.com
MY
&
NS
&
micropost

id content user_id
3 Lorem ipsum 1

Figure 11.2 The belongs_to relationship between a micropost and its user.

Finally, micropost .user should be the user corresponding to the micropost’suser_id.
We can express these requirements in RSpec with the code in Listing 11.4.

Listing 11.4 Tests for the micropost’s user association.
spec/models/micropost_spec.rb

require 'spec_helper'

describe Micropost do

before(:each) do

@user = Factory(:user)

@attr = { :content => "value for content" }
end

it "should create a new instance given valid attributes" do
@user.microposts.create! (@attr)
end

describe "user associations" do
before(:each) do
@micropost = @Quser.microposts.create(@attr)
end
it "should have a user attribute" do
@micropost.should respond_to (:user)

end

it "should have the right associated user" do

@micropost.user_id.should == @user.id
@micropost.user.should == @Quser
end

end
end

416 Chapter 11: User Microposts
user.microposts
micropost
id content user_id
3 Lorem ipsum 1
has_many
micropost user
id content user_id id name email
4 Dolor sit amet 1 [-+— has_many 1 Michael Hartl mhartl @ example.com
has_many
micropost
id content user_id
7 Consectetur 1

Figure 11.3 The has_many relationship between a user and its microposts.

Note that, rather than using Micropost .create or Micropost.create! to create

a micropost, Listing 11.4 uses

@Quser.microposts.create (@Qattr)

and

@Quser.microposts.create! (@attr)

This pattern is the canonical way to create a micropost through its association with users.

(We use a factory user because these tests are for the Micropost model, not the User
model.) When created in this way, the micropost object automatically has its user_id
set to the right value, which fixes the issue noted in Section 2. In particular, the code

before(:each) do
@Gattr = {

:content => "value for content",

:user_id => 1

end

11.1 A Micropost Model 417

it "should create a new instance given valid attributes" do
Micropost.create! (Qattr)
end

from Listing 11.3 is defective because :user_id => 1 does nothing when user_id
is not one of the Micropost model’s accessible attributes. By going through the user
association, on the other hand, the code

it "should create a new instance given valid attributes" do
@Quser.microposts.create! (Qattr)
end

from Listing 11.4 has the right user_id by construction.

These special create methods won’t work yet; they require the proper has_many
association in the User model. We’ll defer the more detailed tests for this association to
Section 11.1.3; for now, we’'ll simply test for the presence of a microposts attribute
(Listing 11.5).

Listing 11.5 A test for the user'smicroposts attribute.
spec/models/user_spec.rb

require 'spec_helper'

describe User do

describe "micropost associations" do

before(:each) do
@user = User.create(@attr)
end

it "should have a microposts attribute" do
@Quser.should respond_to(:microposts)
end
end
end

We can get the tests in both Listing 11.4 and Listing 11.5 to pass using the
belongs_to/has_many association illustrated in Figure 11.2 and Figure 11.3, as shown
in Listing 11.6 and Listing 11.7.

418

Listing 11.6 A micropost belongs_to a user.
app/models/micropost.rb

Chapter 11: User Microposts

class Micropost < ActiveRecord: :Base
attr_accessible :content

belongs_to :user
end

Listing 11.7 A user has_many microposts.
app/models/user.rb

class User < ActiveRecord::Base

attr_accessor :password

attr_accessible :name, :email, :password,

has_many :microposts

end

:password_confirmation

Using this belongs_to/has_many association, Rails constructs the methods shown
in Table 11.1. You should compare the entries in Table 11.1 with the code in
Listing 11.4 and Listing 11.5 to satisfy yourself that you understand the basic nature of
the associations. (There is one method in Table 11.1 we haven’t used so far, the build
method; it will be put to good use in Section 11.1.4 and especially in Section 11.3.2.)

Table 11.1 A summary of user/micropost association methods

Method Purpose
micropost.user Return the User object associated with the micropost.
user.microposts Return an array of the user’s microposts.

user.microposts.create(arg) Create a micropost (user_id = user.id).
user.microposts.create! (arg) Create a micropost (exception on failure).
user.microposts.build(arg) Return a new Micropost object

(user_id

user.id).

11.1 A Micropost Model 419

11.1.3 Micropost Refinements

The test in Listing 11.5 of the has_many association doesn’t test for much—it merely
verifies the existence of a microposts attribute. In this section, we’ll add ordering and
dependency to microposts, while also testing that the user .microposts method actually
returns an array of microposts

We will need to construct some microposts in the User model spec, which means
that we should make a micropost factory at this point. To do this, we need a way to
make an association in Factory Girl. Happily, this is easy—we just use the Factory Girl

method micropost.association, as seen in Listing 11.8.3

Listing 11.8 The complete factory file, including a new factory for microposts.
spec/factories.rb

By using the symbol ':user', we get Factory Girl to simulate the User model.
Factory.define :user do |user]|

user.name "Michael Hartl"
user.email "mhartl@example.com"
user.password "foobar"

user.password_confirmation "foobar"
end

Factory.sequence :email do |n|
"person-#{n}@example.com"
end

Factory.define :micropost do |micropost]
micropost.content "Foo bar"
micropost.association :user

end

Default Scope

We can put the micropost factory to work in a test for the ordering of microposts. By
default, using user.microposts to pull a user’s microposts from the database makes
no guarantees about the order of the posts, but (following the convention of blogs and
Twitter) we want the microposts to come out in reverse order of when they were created,
i.e., most recent first. To test this ordering, we first create a couple of microposts as

follows:

3. For more on Factory Girl associations, including the many options available, see the Factory Girl documen-
tation.

420 Chapter 11: User Microposts

@mpl = Factory(:micropost, :user => @Quser, :created_at => 1.day.ago)
@mp2 = Factory(:micropost, :user => @Quser, :created_at => 1.hour.ago)

Here we indicate that the second post was created more recently, 1.hour.ago, with the
first post created 1.day.ago. Note how convenient the use of Factory Girl is: not only
can we assign the user using mass assignment (since factories bypass attr_accessible),
we can also set created_at manually, which Active Record won’t allow us to do.*

Most database adapters (including the one for SQLite) return the microposts in
order of their ids, so we can arrange for an initial test that almost certainly fails using the
code in Listing 11.9.

Listing 11.9 Testing the order of a user’s microposts.
spec/models/user_spec.rb

require 'spec_helper'

describe User do

describe "micropost associations" do

before(:each) do
@user = User.create(@attr)
@mpl = Factory(:micropost, :user => @Quser, :created_at => 1.day.ago)
@mp2 = Factory(:micropost, :user => @Quser, :created_at => 1.hour.ago)
end

it "should have a microposts attribute" do
@user.should respond_to(:microposts)
end

it "should have the right microposts in the right order" do
@Quser.microposts.should == [@mp2, @mpl]
end
end
end

The key line here is

4. Recall that created_at and updated_at are “magic” columns, so any explicit initialization values are
overwritten by the magic.

11.1 A Micropost Model 421

@Quser.microposts.should == [@mp2, @mpl]

indicating that the posts should be ordered newest first. This should fail because by
default the posts will be ordered by id, i.e., [@mp1, @mp21. This testalso verifies the basic
correctness of the has_many association itself, by checking (as indicated in Table 11.1)
that user.microposts is an array of microposts.

To get the ordering test to pass, we use a Rails facility called default_scope with
an :order parameter, as shown in Listing 11.10. (This is our first example of the notion
of scope. We will learn about scope in a more general context in Chapter 12.)

Listing 11.10 Ordering the microposts with default_scope.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base

default_scope :order => 'microposts.created_at DESC'
end

The order here is 'microposts.created_at DESC’, where DESC is SQL for “descend-
ing”, i.e., in descending order from newest to oldest.

Dependent: Destroy

Apart from proper ordering, there is a second refinement we’d like to add to microposts.
Recall from Section 10.4 that site administrators have the power to destroy users. It stands
to reason that if a user is destroyed, the user’s microposts should be destroyed as well.
We can test for this by first destroying a micropost’s user and then verifying that the
associated microposts are no longer in the database (Listing 11.11).

Listing 11.11 Testing that microposts are destroyed when users are.
spec/models/user_spec.rb

describe User do

describe "micropost associations" do

before(:each) do
@user = User.create(@attr)

422 Chapter 11: User Microposts

@mpl = Factory(:micropost, :user => @Quser, :created_at => 1.day.ago)
@mp2 = Factory(:micropost, :user => @Quser, :created_at => 1.hour.ago)
end

it "should destroy associated microposts" do
@user.destroy
[@mpl, @mp2].each do |micropost|
Micropost.find_by id(micropost.id) .should be_nil
end
end
end

end

Here we have used Micropost.find by id, which returns nil if the record is not
found, whereas Micropost . £ind raises an exception on failure, which is a bit harder to
test for. (In case you’re curious,

lambda do
Micropost.find (micropost.id)
end.should raise_error (ActiveRecord: :RecordNotFound)

does the trick in this case.)
The application code to get Listing 11.11 to pass is less than one line; in fact, it’s
just an option to the has_many association method, as shown in Listing 11.12.

Listing 11.12 Ensuring that a user’s microposts are destroyed along with the user.
app/models/user.rb

class User < ActiveRecord::Base

has_many :microposts, :dependent => :destroy

end

With that, the final form of the user/micropost association is in place.

11.1 A Micropost Model 423

11.1.4 Micropost Validations

Before leaving the Micropost model, we’ll tie off a couple of loose ends by adding
validations (following the example from Section 2.3.2). Both the user_id and content
attributes are required, and content is further constrained to be shorter than 140
characters, which we test for using the code in Listing 11.13.

Listing 11.13 Tests for the Micropost model validations.
spec/models/micropost_spec.rb

require 'spec_helper'

describe Micropost do

before(:each) do
@Quser = Factory(:user)
@attr = { :content => "value for content" }

end

describe "validations" do

it "should require a user id" do
Micropost.new(@attr) .should _not be_valid
end

it "should require nonblank content" do
Quser.microposts.build(:content => " ").should_not be_valid
end

it "should reject long content" do
@Quser.microposts.build(:content => "a" * 141) .should_not be_valid
end
end
end

These generally follow the examples from the User model validation tests from
Section 6.2. (The analogous tests were broken into multiple lines in that section, but you
should be comfortable enough reading RSpec code by now to digest the more compact
formulation above.)

As in Section 6.2, the code in Listing 11.13 uses string multiplication to test the

micropost length validation:

424 Chapter 11: User Microposts

$ rails console

>> "a" * 10

=> "aaaaaaaaaa"

>> "a" * 141

=> "aa

aaa”

In contrast, instead of using the default new constructor as in

User.new(...)

the code in Listing 11.13 uses the build method:

Quser.microposts.build

Recall from Table 11.1 that this is essentially equivalent to Micropost . new, except that
it automatically sets the micropost’s user_id to @user. id.

The validations themselves are straightforward analogues of the User model valida-
tions, as seen in Listing 11.14.

Listing 11.14 The Micropost model validations.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base
attr_accessible :content

belongs_to :user

validates :content, :presence => true, :length => { :maximum => 140 }
validates :user_id, :presence => true

default_scope :order => 'microposts.created_at DESC'
end

This completes the data modeling for users and microposts. It’s time now to build
the web interface.

11.2 Showing Microposts 425

11.2 Showing Microposts

Although we don’t yet have a way to create microposts through the web—that comes
in Section 11.3.2—that won’t stop us from displaying them (and testing that display).
Following Twitter’s lead, we'll plan to display a user’s microposts not on a separate
microposts index page, but rather directly on the user show page itself, as mocked up in
Figure 11.4. We'll start with fairly simple ERb templates for adding a micropost display
to the user profile, and then we’ll add microposts to the sample data populator from
Section 10.3.2 so that we have something to display.

David Jones Name David Jones

URL [users/1337
Microposts 37

Lorem ipsum dolor sit amet, consectetur
Posted 1 day ago.

Consectetur adipisicing elit Y Y
Posted 2 days ago.

Lorem ipsum dolor sit amet, consectetur
Posted 3 days ago.

I Previous I I 1 I | 2 I I 3 I I Next I

Figure 11.4 A mockup of a profile page with microposts.

426 Chapter 11: User Microposts

As with the discussion of the signin machinery in Section 9.3.2, Section 11.2.1

will often push several elements onto the stack at a time, and then pop them off

one by one. If you start getting bogged down, be patient; there’s some nice payoff in

Section 11.2.2.

11.2.1 Augmenting the User Show Page

We begin with a test for displaying the user’s microposts. We work in the Users controller

spec, since it is the Users controller that contains the user show action. Our strategy is

to create a couple of factory microposts associated with the user, and then verify that the

show page has a span tag with CSS class "content™ containing each post’s content.

The resulting RSpec example appears in Listing 11.15.

Listing 11.15 A test for showing microposts on the user show page.
spec/controllers/users_controller spec.rb

require 'spec_helper'

describe UsersController do

render_views

describe "GET 'show'" do

before(:each) do
@user = Factory(:user)
end

it "should show the user's microposts" do
mpl = Factory(:micropost, :user => @Quser, :content => "Foo bar")
mp2 = Factory(:micropost, :user => @Quser, :content => "Baz quux")
get :show, :id => Quser

response.should have_selector ("span.content", :content => mpl.content)
response.should have_selector ("span.content", :content => mp2.content)
end
end

end

11.2 Showing Microposts 427

Although these tests won’t pass until Listing 11.17, we'll get started on the appli-
cation code by inserting a table of microposts into the user profile page, as shown in
Listing 11.16.°

Listing 11.16 Adding microposts to the user show page.
app/views/users/show.html.erb

<table class="profile">
<tr>
<td class="main">

<% unless @Quser.microposts.empty? %>
<table class="microposts" summary="User microposts">
<%= render @microposts %>
</table>
<%= will_paginate @microposts %>
<% end %>
</td>
<td class="sidebar round">
Name <%= @user.name $>

URL <%= link_to user_path(@Quser), Quser $%>

Microposts <%= @Quser.microposts.count %>
</td>
</tr>
</table>

We'll deal with the microposts table momentarily, but there are several other things to
note first. One new idea is the use of empty? in the line

@Quser.microposts.empty?

This applies the empty? method, seen before in the context of strings (e.g., Section 4.2.3),
to an array:

5. In the sense of semantic markup, it would probably be better to use an ordered list, but in that case the vertical
alignment of text and images is much more difficult than with tables. See the exercise in Section 11.5 if you
insist on struggling with the semantic version.

428 Chapter 11: User Microposts

S rails console
>> [1, 2].empty?
=> false

>> [].empty?

=> true

By using the conditional unless clause,

<% unless @Quser.microposts.empty? %>

we make sure that an empty table won’t be displayed when the user has no microposts.
You'll also note from Listing 11.16 that we’ve preemptively added pagination for
microposts through

<%= will_paginate @microposts %>

If you compare this with the analogous line on the user index page, Listing 10.27, you’ll
see that before we had just

<%= will_paginate %>

This worked because, in the context of the Users controller, will_paginate assumes
the existence of an instance variable called @users (which, as we saw in Section 10.3.3,
should be of class willPaginate::Collection). In the present case, since we are
still in the Users controller but want to paginate microposts instead, we pass an explicit
@microposts variable to will_paginate. Of course, this means that we will have to
define such a variable in the user show action (Listing 11.18).

Finally, note that we have taken this opportunity to add a count of the current
number of microposts to the profile sidebar:

<td class="sidebar round">
Name <%= @Quser.name $%$>

URL <%= link_to user_path(@Quser), @user %>

Microposts <%= @Quser.microposts.count %>

</td>

11.2 Showing Microposts 429

Here @user .microposts.count is the analogue of the User.count method, except
that it counts the microposts belonging to a given user through the user/micropost
association.®

Now for the microposts table itself:

<table class="microposts" summary="User microposts">
<%= render @microposts %>
</table>

This code is responsible for generating the table of microposts, but you can see that it
just defers the heavy lifting to a micropost partial. We saw in Section 10.3.4 that the
code

<%= render G@users %>

automatically renders each of the users in the @users variable using the
_user.html.erb partial. Similarly, the code

<%= render @microposts %>

does exactly the same thing for microposts. This means that we must define a
_micropost.html.erb partial (along with a micropost views directory), as shown
in Listing 11.17.

Listing 11.17 A partial for showing a single micropost.
app/views/microposts/_micropost.html.erb

<tr>
<td class="micropost">
<%= micropost.content %>

Posted <%= time_ago_in_words (micropost.created_at) %> ago.

</tda>
</txr>

6. In case you're wondering, the association count method is smart, and performs the count directly in the
database. In particular, it does 7o¢ pull all the microposts out of the database and then call 1ength on the resulting
array, as this would become terribly inefficient as the number of microposts grew. Instead, it asks the database
to count the microposts with the given user_id. By the way, in the unlikely event that finding the count is
still a bottleneck in your application, you can make it even faster with a counter cache.

430 Chapter 11: User Microposts

This uses the awesome time_ago_in_words helper method, whose effect we will see
in Section 11.2.2.

Thus far, despite defining all the relevant ERb templates, the test in Listing 11.15
should have been failing for want of an @microposts variable. We can get it to pass
with Listing 11.18.

Listing 11.18 Adding an @microposts instance variable to the user show action.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def show
@user = User.find(params[:1id])
@microposts = Quser.microposts.paginate(:page => params|[:page])
@title = @user.name
end
end

Notice here how clever paginate is—it even works with the microposts association,
converting the array into a willPaginate: :Collection object on the fly.

Upon adding the CSS from Listing 11.19 to our custom.css stylesheet,” we can
get a look at our new user profile page in Figure 11.5. It’s rather. . . disappointing. Of
course, this is because there are not currently any microposts. It’s time to change that.

Listing 11.19 The CSS for microposts (includes all the CSS for this chapter).
public/stylesheets/custom.css

hl.micropost {
margin-bottom: 0.3em;

table.microposts {
margin-top: lem;

7. For convenience, Listing 11.19 actually has 2// the CSS needed for this chapter.

11.2 Showing Microposts 431

table.microposts tr {
height: 70px;

table.microposts tr td.gravatar {
border-top: 1lpx solid #ccc;
vertical-align: top;
width: 50px;

table.microposts tr td.micropost {
border-top: 1lpx solid #ccc;
vertical-align: top;
padding-top: 10px;

table.microposts tr td.micropost span.timestamp {
display: block;
font-size: 85%;
color: #666;

div.user_info img {
padding-right: 0.lem;

div.user_info a {
text-decoration: none;

div.user_info span.user_name {
position: absolute;

div.user_info span.microposts {
font-size: 80%;

form.new _micropost {
margin-bottom: 2em;

form.new_micropost textarea {
height: 4em;
margin-bottom: 0;

432 Chapter 11: User Microposts

Ruby an Rails Tutorial Sample App | Example User ”ﬁ

hitp [flocaihost 1000/ uiers/ 1

Slémble A.pp

7 Example User e
& Microposts 0

Figure 11.5 The user profile page with code for microposts—but no microposts.

11.2.2 Sample Microposts

With all the work making templates for user microposts in Section 11.2.1, the ending was
rather anticlimactic. We can rectify this sad situation by adding microposts to the sample
populator from Section 10.3.2. Adding sample microposts for a//the users actually takes
a rather long time, so first we’ll select just the first six users® using the : 1imit option to

the User.all method:’

User.all(:limit => 6)

8. (i.e., the five users with custom Gravatars, and one with the default Gravatar)

9. Tail your 1og/development. log file if you're curious about the SQL this method generates.

11.2 Showing Microposts 433

We then make 50 microposts for each user (plenty to overflow the pagination limit
of 30), generating sample content for each micropost using the Faker gem’s handy
Lorem.sentence method. (Faker: :Lorem.sentence returns lorem fpmm text; as
noted in Chapter 6, lorem fpsum has a fascinating back story.) The result is the new
sample data populator shown in Listing 11.20.

Listing 11.20 Adding microposts to the sample data.
lib/tasks/sample_data.rake

require 'faker'

namespace :db do
desc "Fill database with sample data"
task :populate => :environment do

User.all(:limit => 6).each do |user
50.times do
user.microposts.create! (:content => Faker::Lorem.sentence(5))
end
end
end
end

Of course, to generate the new sample data we have to run the db:populate Rake task:

$ rake db:populate

With that, we are in a position to enjoy the fruits of our Section 11.2.1 labors by
displaying information for each micropost.'® Figure 11.6 shows the user profile page
for the first (signed-in) user, while Figure 11.7 shows the profile for a second user.
Finally, Figure 11.8 shows the second page of microposts for the first user, along with
the pagination links at the bottom of the display. In all three cases, observe that each
micropost display indicates the time since it was created (e.g., “Posted 1 minute ago.”);
this is the work of the time_ago_in_words method from Listing 11.17. If you wait a
couple minutes and reload the pages, you’ll see how the text gets automatically updated
based on the new time.

10. By design, the Faker gem’s lorem jpsum text is randomized, so the contents of your sample microposts will

differ.

434 Chapter 11: User Microposts

ann Ruby on Rails Tutorial Sample App | Example User (@]

' — ;
a)> =) | hitp | flocalbast 1000 users/ 1 L 'J

Sé:nplo App

Name Example Liser
¥ Example User [
Microposts 50
Ipsa dolore faciis asparnatur pormo ducimus

natus

Dolorem vel sequi et itague facilis ut.

E ab Nbéro officia 1empora pormo avenset
aspernalur,

Ut possimus laudantium fuga omnis expedita
Vel reiciendis Ut quibusdam nihil

Earum maiones non nulla aut odio voluplas hic

Figure 11.6 The user profile (/users/1) with microposts.

11.3 Manipulating Microposts

Having finished both the data modeling and display templates for microposts, we now
turn our attention to the interface for creating them through the web. The result will be
our third example of usingan HTML form to create a resource—in this case, a Microposts
resource.!! In this section, we'll also see the first hint of a status feed—a notion brought
to full fruition in Chapter 12. Finally, as with users, we’ll make it possible to destroy
microposts through the web.

There is one break with past convention worth noting: the interface to the Microposts
resource will run principally through the Users and Pages controllers, rather than relying
on a controller of its own. This means that the routes for the Microposts resource are
unusually simple, as seen in Listing 11.21. The code in Listing 11.21 leads in turn to the

11. The other two resources are Users in Section 8.1 and Sessions in Section 9.1.

11.3 Manipulating Microposts 435

Bitp [localhast Y000 users/ i L
Ruby on Rails Tutoria
Sample App
B Roma Miller b
Microposts 50

Libero emror aum aveniat similique quia laboriosam.

sm officiis et vol ot ut vel

tur dok molitia vel blanditis repellat.

Nésciunt quam distinctio neque facene,
; rrten a0

Fugit perspeciatis rerum quaeral itaque sed aut et

Veniam accusamus earum molestiae qui vero placeat
officia odit.

Figure 11.7 The profile of a different user, also with microposts (/users/3).

RESTful routes show in Table 11.2, which is a small subset of the full set of routes seen
in Table 2.3. Of course, this simplicity is a sign of being more advanced, not less—we’ve
come a long way since our reliance on scaffolding in Chapter 2, and we no longer need
most of its complexity.

Listing 11.21 Routes for the Microposts resource.
config/routes.rb

SampleApp: :Application.routes.draw do
resources :users
resources :sessions, :only => [:new, :create, :destroy]
resources :microposts, :only => [:create, :destroy]

end

page
action

Ruby on Rails Tutorial Sample App | Example User

Chapter 11: User Microposts

hitp | localhost 3000/ users | 17page =2

Et iusto dolores omnis ea panatur esse,

Aut autern impedit atque ipsa guod.

Tenetur excepturi molestiae minima et nisi perferendis
simibque quidem incidunt

Postad tes ag
Sapiente flum odit reprehenderit nesciunt vel dicta
Ssimus ullam sum

Cuis ut recusandae guaerat error veniam voluptatum.

2 Maxt -

tmap ActiveSupport . HashiWithindifferentAccess

Figure 11.8 A second profile of microposts, with pagination links (/users/1?page=2).

11.3.1 Access Control

We begin our development of the Microposts resource with some access control in

the Microposts controller. The idea is simple: both the create and destroy ac-

tions should require users to be signed in. The RSpec code to test for this appears in

Listing 11.22, which will require creating the Microposts controller spec file. (We'll test

for and add a third protection—ensuring that only a micropost’s user can destroy it—in

Section 11.3.4.)

Table 11.2 RESTful routes provided by the Microposts resource in Listing 11.21

HTTP Request URL Action Purpose
POST /microposts create create a new micropost
DELETE /microposts/1 destroy delete micropost with id 1

11.3 Manipulating Microposts 437

Listing 11.22 Access control tests for the Microposts controller.
spec/controllers/microposts_controller spec.rb

require 'spec_helper'

describe MicropostsController do

render_views

describe "access control" do

it "should deny access to 'create'" do
post :create
response.should redirect_to(signin_path)
end

it "should deny access to 'destroy'" do
delete :destroy, :id => 1
response.should redirect_to(signin_path)
end
end
end

Writing the application code needed to get the tests in Listing 11.22 to pass requires a
little refactoring first. Recall from Section 10.2.1 that we enforced the signin requirement
using a before filter that called the authenticate method (Listing 10.11). At the time,
we only needed authenticate in the Users controller, but now we find that we need
it in the Microposts controller as well, so we’ll move authenticate into the Sessions
helper, as shown in Listing 11.23.'2

Listing 11.23 Moving the authenticate method into the Sessions helper.
app/helpers/sessions_helper.rb

module SessionsHelper

def authenticate
deny_access unless signed_in?
end

12. We noted in Section 9.3.2 that helper methods are available only in views by default, but we arranged for
the Sessions helper methods to be available in the controllers as well by adding include SessionsHelper to
the Application controller (Listing 9.11).

438 Chapter 11: User Microposts

def deny_access

store_location

redirect_to signin_path, :notice => "Please sign in to access this page."
end

end

(To avoid code repetition, you should also remove authenticate from the Users
controller at this time.)

With the code in Listing 11.23, the authenticate method is now available in
the Microposts controller, which means that we can restrict access to the create and
destroy actions with the before filter shown in Listing 11.24. (Since we didn’t generate
it at the command line, you will have to create the Microposts controller file by hand.)

Listing 11.24 Adding authentication to the Microposts controller actions.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
before_filter :authenticate

def create
end

def destroy
end
end

Note that we haven’t restricted the actions the before filter applies to, since presently
it applies to them both. If we were to add, say, an index action accessible even to
non-signed-in users, we would need to specify the protected actions explicitly:

class MicropostsController < ApplicationController
before_filter :authenticate, :only => [:create, :destroyl

def create
end

def destroy
end
end

11.3 Manipulating Microposts 439

11.3.2 Creating Microposts

In Chapter 8, we implemented user signup by making an HTML form that issued an
HTTP PosT request to the create action in the Users controller. The implementation
of micropost creation is similar; the main difference is that, rather than using a separate
page at /microposts/new, we will (following Twitter’s convention) put the form on
the Home page itself (i.e., the root path /), as mocked up in Figure 11.9.

When we last left the Home page, it appeared as in Figure 5.7—that is, it had a big,
fat “Sign up now!” button in the middle. Since a micropost creation form only makes
sense in the context of a particular signed-in user, one goal of this section will be to
serve different versions of the Home page depending on a visitor’s signin status. We’ll
implement this in Listing 11.27, but for now the only implication is that the tests for the

What'S up? . David Jones

Lorem ipsum dolor sit amet, maiores ornare ac
fermentum

()

Figure 11.9 A mockup of the Home page with a form for creating microposts.

440 Chapter 11: User Microposts

Microposts controller create action should sign a (factory) user in before attempting
to make a post.

With that caveat in mind, the micropost creation tests parallel those for user creation
from Listing 8.6 and Listing 8.14; the result appears in Listing 11.25.

Listing 11.25 Tests for the Microposts controller create action.
spec/controllers/microposts_controller spec.rb

require 'spec_helper'

describe MicropostsController do

describe "POST 'create'" do

before(:each) do
@Quser = test_sign_in(Factory(:user))
end

describe "failure" do

before(:each) do
@attr = { :content => "" }
end

it "should not create a micropost" do
lambda do
post :create, :micropost => @attr
end.should_not change (Micropost, :count)
end

it "should render the home page" do
post :create, :micropost => Qattr
response.should render_template('pages/home')
end
end

describe "success" do

before(:each) do
@attr = { :content => "Lorem ipsum" }
end

it "should create a micropost" do
lambda do

post :create, :micropost => Qattr

11.3 Manipulating Microposts 441

end.should change (Micropost, :count).by (1)
end

it "should redirect to the home page" do
post :create, :micropost => @attr
response.should redirect_to (root_path)
end

it "should have a flash message" do
post :create, :micropost => Qattr
flash[:success].should =~ /micropost created/i
end
end
end
end

The create action for microposts is similar to its user analogue (Listing 8.15);
the principal difference lies in using the user/micropost association to build the new
micropost, as seen in Listing 11.26.

Listing 11.26 The Microposts controller create action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

def create
@micropost = current_user.microposts.build(params|[:micropost])
if @micropost.save
flash[:success] = "Micropost created!"
redirect_to root_path
else
render 'pages/home'
end
end

end

At this point, the tests in Listing 11.25 should all be passing, but of course we still
don’t have a form to create microposts. We can rectify this with Listing 11.27, which
serves up different HTML based on whether the site visitor is signed in or not.

442 Chapter 11: User Microposts

Listing 11.27 Adding microposts creation to the Home page (/).
app/views/pages/home.html.erb

<% if signed_in? %>
<table class="front" summary="For signed-in users">
<tr>
<td class="main">
<hl class="micropost">What's up?</hl>
<%= render 'shared/micropost_form' $%>
</tda>
<td class="sidebar round">
<%= render 'shared/user_info' %>
</tda>
</tr>
</table>
<% else %>
<hl>Sample App</hl>

<p>
This is the home page for the
Ruby on Rails Tutorial
sample application.

</p>

<%= link_to "Sign up now!", signup_path, :class => "signup_button round" $%>
<% end %>

Having so much code in each branch of the if-else conditional is a bit messy, and
cleaning it up using partials is left as an exercise (Section 11.5). Filling in the necessary
partials from Listing 11.27 isn’t an exercise, though; we fill in the micropost form partial
in Listing 11.28 and the new Home page sidebar in Listing 11.29.

Listing 11.28 The form partial for creating microposts.
app/views/shared/_micropost_form.html.erb

<%= form_for @micropost do |f| %>
<%= render 'shared/error_messages', :o0bject => f.object %>
<div class="field">
<%= f.text_area :content $>
</div>
<div class="actions">
<%= f.submit "Submit" %>
</div>
<% end %>

11.3 Manipulating Microposts 443

Listing 11.29 The partial for the user info sidebar.
app/views/shared/_user_ info.html.erb

<div class="user_info">
<a href="<%= user_path(current_user) $>">
<%= gravatar_for current_user, :size => 30 %>

<%= current_user.name $>

<%= pluralize(current_user.microposts.count, "micropost") %>

</div>

Note that, as in the profile sidebar (Listing 11.16), the user info in Listing 11.29 displays
the total number of microposts for the user. There’s a slight difference in the display,
though; in the profile sidebar, Microposts is a label, and showing Microposts 1 makes
perfect sense. In the present case, though, saying “1 microposts” is ungrammatical, so we
arrange to display “1 micropost” (but “2 microposts”) using the convenient pluralize
helper method.

The form defined in Listing 11.28 is an exact analogue of the signup form in
Listing 8.2, which means that it needs an @micropost instance variable. This is supplied
in Listing 11.30—but only when the user is signed in.

Listing 11.30 Adding a micropost instance variable to the home action.
app/controllers/pages_controller.rb

class PagesController < ApplicationController

def home
@title = "Home"
@micropost = Micropost.new if signed_in?
end
end

Now the HTML should render properly, showing the form as in Figure 11.10, and
a form with a submission error as in Figure 11.11. You are invited at this point to create

444 Chapter 11: User Microposts

Rubry o Rails Tutonal Sample App | Home

. Q@ L htp / flocaihast 1000 w]}
Sample App
What's up? P el
- Done Q aerens | O “

Figure 11.10 The Home page (/) with a new micropost form.

a new post for yourself and verify that everything is working—but you should probably
wait until after Section 11.3.3.

11.3.3 A Proto-feed

The comment at the end of Section 11.3.2 alluded to a problem: the current Home
page doesn’t display any microposts. If you like, you can verify that the form shown in
Figure 11.10 is working by submitting a valid entry and then navigating to the profile
page to see the post, but that’s rather cumbersome. It would be far better to have a
feed of microposts that includes the user’s own posts, as mocked up in Figure 11.12.
(In Chapter 12, we'll generalize this feed to include the microposts of users being followed
by the current user.)

Since each user should have a feed, we are led naturally to a feed method in the User
model. Eventually, we will test that the feed returns the microposts of the users being
followed, but for now we’ll just test that the feed method includes the current user’s

11.3 Manipulating Microposts 445

hitp | flocalhast 1000/ maroposts T

Ruby on Rails Tutoria

Sample App

What's up?
® Content can't be blark

= imap Hashiithindifferenthccess

commit Submit

WICrODOST. !map:HasnWIThIngifferentAccess

Figure 11.11 The home page with form errors.

microposts but excludes the posts of a different user. We can express these requirements
in code with Listing 11.31.

Listing 11.31 Tests for the (proto-)status feed.
spec/models/user_spec.rb

require 'spec_helper'

describe User do

describe "micropost associations" do

before(:each) do
@Quser = User.create(@attr)
@mpl = Factory(:micropost, :user => @Quser, :created_at => 1.day.ago)
@mp2 = Factory(:micropost, :user => @Quser, :created_at => 1.hour.ago)
end

446 Chapter 11: User Microposts

describe "status feed" do

it "should have a feed" do
Quser.should respond_to(:feed)
end

it "should include the user's microposts" do
@Quser.feed.include? (@mpl) .should be_true
Quser.feed.include? (@mp2) .should be_true
end

it "should not include a different user's microposts" do

mp3 = Factory(:micropost,
:user => Factory(:user, :email => Factory.next(:email)))

@Quser.feed.include? (mp3) .should be_false

end

end
end
end

These tests introduce the array include? method, which simply checks if an array

includes the given element:!3

S rails console

>> a = [1, "foo", :bar]
>> a.include? ("foo")

=> true

>> a.include? (:bar)

=> true

>> a.include? ("baz")

=> false

We can arrange for an appropriate micropost feed by selecting all the microposts
with user_id equal to the current user’s id, which we accomplish using the where

method on the Micropost model, as shown in Listing 11.32.'4

13. Learning about methods such as include? is one reason why, as noted in Section 1.1.1, I recommend
reading a pure Ruby book after finishing this one.

14. See the Rails Guide on the Active Record Query Interface for more on where and the like.

11.3 Manipulating Microposts 447

What's up?

s R
| David Jones
Lorem ipsum dolor sit amet, maiores ornare ac 37 microposts
fermentum
Lorem ipsum dolor sit amet, consectetur
Posted 1 day ago.
y L . . J
Consectetur adipisicing elit
Posled 2 days ago.
Lorem ipsum dolor sit amet, consectetur
Posted 3 days ago.
IPmﬁnulIIlI I2II3|INQ>;|I

()

Figure 11.12 A mockup of the Home page with a proto-feed.

Listing 11.32 A preliminary implementation for the micropost status feed.
app/models/user.rb

class User < ActiveRecord::Base

def feed

This is preliminary. See Chapter 12 for the full implementation.
Micropost.where("user_id = 2", id)
end

end

448 Chapter 11: User Microposts

The question mark in

Micropost.where("user_id = ?", id)

ensures that id is properly escaped before being included in the underlying SQL query,
thereby avoiding a serious security hole called SQL #njection. (The id attribute here is
just an integer, so there is no danger in this case, but a/ways escaping variables injected
into SQL statements is a good habit to cultivate.)

Alert readers might note at this point that the code in Listing 11.32 is essentially
equivalent to writing

def feed
microposts
end

We've used the code in Listing 11.32 instead because it generalizes much more naturally
to the full status feed needed in Chapter 12.

To use the feed in the sample application, we add an @feed_items instance variable
for the current user’s (paginated) feed, as in Listing 11.33, and then add a feed partial
(Listing 11.34) to the Home page (Listing 11.30).

Listing 11.33 Adding a feed instance variable to the home action.
app/controllers/pages_controller.rb

class PagesController < ApplicationController

def home
@title = "Home"
if signed_in?
@micropost = Micropost.new
@feed_items = current_user.feed.paginate(:page => params|:page])
end
end

end

11.3 Manipulating Microposts 449

Listing 11.34 The status feed partial.
app/views/shared/_feed.html.erb

<% unless @feed_items.empty? %>
<table class="microposts" summary="User microposts">

<%= render :partial => 'shared/feed_item',6 :collection => @feed_items %>
</table>
<%= will_paginate @feed_items %>
<% end %>

The status feed partial defers the feed item rendering to a feed item partial using the
code

<%= render :partial => 'shared/feed_item',6 :collection => @feed_items %>

Here we pass a :collection parameter with the feed items, which causes render to
use the given partial (* feed_item’ in this case) to render each item in the collection.
(We have omitted the :partial parameter in previous renderings, writing, e.g., render
' shared/micropost’, but with a :collection parameter that syntax doesn’t work.)
The feed item partial itself appears in Listing 11.35; note the addition of a delete link to
the feed item partial, following the example from Listing 10.38.

Listing 11.35 A partial for a single feed item.
app/views/shared/_feed item.html.erb

<tr>
<td class="gravatar">
<%= link_to gravatar_for(feed_item.user), feed_item.user %>
</tda>
<td class="micropost">

<%= link_to feed_ item.user.name, feed_item.user %>

<%= feed_item.content $>

Posted <%= time_ago_in_words (feed_item.created_at) %> ago.

</td>
<% if current_user?(feed_item.user) $%>
<td>

450 Chapter 11: User Microposts

<%= link _to "delete", feed_item, :method => :delete,
:confirm => "You sure?",
:title => feed_item.content $%>
</tda>
<% end %>

</txr>

We can then add the feed to the Home page by rendering the feed partial as usual
(Listing 11.36). The result is a display of the feed on the Home page, as required
(Figure 11.13).

Listing 11.36 Adding a status feed to the Home page.
app/views/pages/home.html.erb

<% if signed_in? %>
<table class="front" summary="For signed-in users">
<tr>

<td class="main">
<hl class="micropost">What's up?</hl>
<%= render 'shared/micropost_form' &>
<%= render 'shared/feed' %>

</tda>

</tr>
</table>

<% else %>

<% end %>

At this point, creating a new micropost works as expected, as seen in Figure 11.14.
(We'll write an integration test to this effect in Section 11.3.5.) There is one subtlety,
though: on failed micropost submission, the Home page expects an @feed_items in-
stance variable, so failed submissions currently break (as you should be able to verify by
running your test suite). The easiest solution is to suppress the feed entirely by assigning
it an empty array, as shown in Listing 11.37.1

15. Unfortunately, returning a paginated feed doesn’t work in this case. Implement it and click on a pagination
link to see why. (The screencasts will cover this issue in more depth.)

11.3 Manipulating Microposts 451

hitg / flecathast 1000/ W
Ruby on Rails Tutorial i
Sample App
'
What's up?
fe 3]
1’; Exampie User Ipsa dolore faclis
anpesrnatur porro ducimus natus.
1\ Exampie User Dolorem vel sequi et
F 3 itaque facilis ut
Af\ Example User EUab libero officia
M rempora poro evenset aspermnatur.
1’; Exampi User Ut possimus laudantium !
fuga omnis sxpadita 4

Figure 11.13 The Home page (/) with a proto-feed.

Listing 11.37 Adding an (empty) @Eeed_1items instance variable to the create action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

def create
@micropost = current_user.microposts.build(params[:micropost])
if @micropost.save
flash[:success] = "Micropost created!"
redirect_to root_path
else
@feed_items = []
render 'pages/home'
end
end

end

452 Chapter 11: User Microposts

Ruby on Rails Tutorial Sample App | Home —
Sample App
Micropost created!
What's up? 1R Examole User

7 Example User | just created my first real
o MiCropost!

‘f, Example User ipsa dolore facilis

o aspernatur pormo ducimus natus.

‘f._ Example User Dolorem vel sequi et
E S Aaque taclis ut

Figure 11.14 The Home page after creating a new micropost.

11.3.4 Destroying Microposts

The last piece of functionality to add to the Microposts resource is the ability to destroy
posts. As with user deletion (Section 10.4.2), we accomplish this with “delete” links, as
mocked up in Figure 11.15. Unlike that case, which restricted user destruction to admin
users, the delete links will work only for microposts created by the current user.

Odur first step is to add a delete link to the micropost partial as in Listing 11.35. The
result appears in Listing 11.38.

Listing 11.38 A partial for showing a single micropost.
app/views/microposts/_micropost.html.erb

<tr>
<td class="micropost">
<%= micropost.content %>

Posted <%= time_ago_in_words (micropost.created_at) %> ago.

11.3 Manipulating Microposts

</td>
<% if

<td>

current_user? (micropost.user) %>

<%= link_to "delete", micropost, :method => :delete,

</td>

:confirm => "You sure?",

:title => micropost.content %>

<% end 3>

</tr>

453

Note: As of the latest version of Rails 3.0, I and several other readers sometimes encounter

a strange bug, whereby the micropost .user association isn’t made properly. The result

What's up?

Lorem ipsum dolor sit amet, maiores ornare ac
fermentum

Lorem ipsum dolor sit amet, consectetur
Posted 1 day ago.

Consectetur adipisicing elit
Posted 2 days ago.

Lorem ipsum dolor sit amet, consectetur
Posted 3 days ago.

[emone | [+ | [2] [=] [[ten]

delete

Figure 11.15 A mockup of the proto-feed with micropost delete links.

454 Chapter 11: User Microposts

is that calling micropost . user raises a NoMethodError exception. Until this Rails bug
is fixed, as a workaround you can replace the line

<% if current_user? (micropost.user) %>

with the lines

<% user = micropost.user rescue User.find(micropost.user_id) %>
<% if current_user? (user) $%>

When the call to micropost.user raises an exception, this code finds the user based
on the micropost’s user_id.

The tests for the destroy action are straightforward generalizations of the similar
tests for destroying users (Listing 10.40), as seen in Listing 11.39.

Listing 11.39 Tests for the Microposts controller destxroy action.
spec/controllers/microposts_controller spec.rb

describe MicropostsController do

describe "DELETE 'destroy'" do
describe "for an unauthorized user" do

before(:each) do
@user = Factory(:user)
wrong_user = Factory(:user, :email => Factory.next(:email))
test_sign_in(wrong_user)
@micropost = Factory(:micropost, :user => @Quser)
end

it "should deny access" do
delete :destroy, :id => @micropost
response.should redirect_to(root_path)
end
end

describe "for an authorized user" do

before(:each) do

Quser = test_sign_in(Factory(:user))

11.3 Manipulating Microposts 455

@micropost = Factory(:micropost, :user => @user)

end

it "should destroy the micropost" do

lambda do
delete :destroy, :id => @micropost

end.should change (Micropost, :count).by(-1)

end

end
end
end

The application code is also analogous to the user case in Listing 10.41; the main
difference is that, rather than using an admin_user before filter, in the case of micro-
posts we have an authorized_user before filter to check that the current user is the
micropost’s user. The code appears in Listing 11.40, and the result of destroying the
second-most-recent post appears in Figure 11.16.

Ruby on Rails Tutorial Sample App | Home @

f8ano
o”g L5 M) hetp | flocalhast 1000/ wv)

Rz

Sample App

Whatls up? f =_._,,‘..___I.. User

]

Example User | just created my first real
meCropost!

Example User Dolorem vel sequi et
taque tacilis ut.
Example User Et ab libero officia

TMPOra POMO Sveniet aspematur

Example User Ut possimus laudantium
tuga omnis expedita

R

Figure 11.16 The user home page after deleting the second-most-recent micropost.

456 Chapter 11: User Microposts

Listing 11.40 The Microposts controller destroy action.
app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController
before_filter :authenticate, :only => [:create, :destroy]
before_filter :authorized_user, :only => :destroy

def destroy
@micropost.destroy
redirect_back_or root_path

end
private

def authorized_user
@micropost = Micropost.find(params|[:id])
redirect_to root_path unless current_user? (@micropost.user)
end
end

11.3.5 Testing the New Home Page

Before leaving micropost creation and destruction, we’ll write some RSpec integration
specs to test that our forms are working properly. As in the case of users (Section 8.4),

we start by generating a microposts integration spec:

$ rails generate integration_test microposts

Tests for failed and successful micropost creation appear in Listing 11.41.

Listing 11.41 An integration test for the microposts on the home page.
spec/requests/microposts_spec.rb

require 'spec_helper'

describe "Microposts" do

before(:each) do
user = Factory(:user)
visit signin_path
£fill in :email, :with => user.email

11.4 Conclusion 457

fill_in :password, :with => user.password
click_button
end

describe "creation" do
describe "failure" do

it "should not make a new micropost" do
lambda do
visit root_path
fill_in :micropost_content, :with => ""
click_button
response.should render_template('pages/home')
response.should have_selector ("div#error_explanation")
end.should_not change (Micropost, :count)
end
end

describe "success" do

it "should make a new micropost" do
content = "Lorem ipsum dolor sit amet"
lambda do
visit root_path
fill_in :micropost_content, :with => content
click_button
response.should have_selector ("span.content", :content => content)
end.should change (Micropost, :count).by (1)
end
end
end
end

Having finished testing the micropost functionality, we are now ready to move on to
the final feature of our sample application: user following.

11.4 Conclusion

With the addition of the Microposts resource, we are nearly finished with our sample
application. All that remains is to add a social layer by letting users follow each other.
We'll learn how to model such user relationships, and see the implications for the status
feed, in Chapter 12.

458

Chapter 11: User Microposts

Before proceeding, be sure to commit and merge your changes if you're using Git

for version control:

$ git add .
$ git commit -m "Added user microposts"

$ git checkout master

$ git merge user-microposts

You can also push the app up to Heroku at this point. Because the data model has

changed through the addition of the microposts table, you will also need to migrate

the production database:

$ git push heroku

$ heroku rake db:migrate

11

.5 Exercises

We've covered enough material now that there is a combinatorial explosion of possible

extensions to the application. Here are just a few of the many possibilities:

1.

(Challenging) Add a JavaScript display to the Home page to count down from 140
characters.

. Add tests for the sidebar micropost counts (including proper pluralization).
. (Mainly for designers) Modify the microposts listing to use an ordered list instead

of a table. (Note: this is how Twitter displays its status updates.) Then add the
appropriate CSS to make the resulting feed not look like crap.

4. Add tests for micropost pagination.

. Refactor the Home page to use separate partials for the two branches of the i f-else

statement.

. Write a test to make sure delete links do not appear for microposts not created by

the current user.

. Add a nested route so that /users/1/microposts shows all the microposts for

user 1. (You will also have to add a Microposts controller index action and corre-

sponding view.)

. Very long words currently break our layout, as shown in Figure 11.17. Fix this

problem using the wrap helper defined in Listing 11.42. (Note the use of the raw
method to prevent Rails from escaping the resulting HTML.)

11.5 Exercises 459

8eno Ruby on Rails Tutonial Sample App | Home =]

hitp | /localhavt 3000/

Ruby on Rails Tutorial

Sample App

What's up?

Example User

Example User | just created my first real micropost!

Example User Dolorem vel sequi et itague facilis ut.

Figure 11.17 The (broken) site layout with a particularly long word.

Listing 11.42 A helper to wrap long words.
app/helpers/microposts_helper.rb

module MicropostsHelper

def wrap (content)
raw(content.split.map{ |s| wrap_long_string(s) }.join(' '))

end
private

def wrap_long_string(text, max_width = 30)
zero_width_space = "​"
regex = /.{1,#{max_width}}/
(text.length < max_width) ? text
text.scan(regex) .join(zero_width_space)
end
end

This page intentionally left blank

CHAPTER 12
Following Users

In this chapter, we will complete the core sample application by adding a social layer that
allows users to follow (and unfollow) other users, resulting in each user’s Home page
displaying a status feed of the followed users’ microposts. We will also make views to
display both a user’s followers and the users each user is following. We will learn how to
model user following in Section 12.1, and then make the web interface in Section 12.2
(including an introduction to Ajax). Finally, we’ll end by developing a fully functional
status feed in Section 12.3.

This final chapter contains some of the most challenging material in the tutorial,
including a complicated data model and some Ruby/SQL trickery to make the status
feed. Through these examples, you will see how Rails can handle even rather intricate data
models, which should serve you well as you go on to develop your own applications with
their own specific requirements. To help with the transition from tutorial to independent
development, Section 12.4 contains suggested extensions to the core sample application,
along with pointers to more advanced resources.

As usual, Git users should create a new topic branch:

$ git checkout -b following-users

Because the material in this chapter is particularly challenging, before writing any
code we'll pause for a moment and take a tour of user following. As in previous chapters,
at this early stage we'll represent pages using mockups.! The full page flow runs as

1. The photographs in the mockup tour are from hetp://www.flickr.com/photos/john_lustig/2518452221/ and
heep:/fwww.flickr.com/photos/30775272@N05/2884963755/.

461

http://www.flickr.com/photos/john_lustig/2518452221/
http://www.flickr.com/photos/30775272@N05/2884963755/

462 Chapter 12: Following Users

4 N
. Name John Calvin
John Calvin URL fusers'os
Microposts 67
50 z
following followers
Lorem ipsum dolor sit amet, consectetur
Posted 1 day ago.
Consectetur adipisicing elit
Posted 2 days ago.
Lorem ipsum dolor sit amet, consectetur
Posted 2 days ago.
Lpevous | [+] [2 | [5 | [lvee] % i

()

Figure 12.1 A mockup of the current user’s profile.

follows: a user (John Calvin) starts at his profile page (Figure 12.1) and navigates to the
Users page (Figure 12.2) to select a user to follow. Calvin navigates to the profile of a
second user, Thomas Hobbes (Figure 12.3), clicking on the “Follow” button to follow
that user. This changes the “Follow” button to “Unfollow”, and increments Hobbes’s
“followers” count by one (Figure 12.4). Navigating to his home page, Calvin now sees
an incremented “following” count and finds Hobbes’s microposts in his status feed

(Figure 12.5). The rest of this chapter is dedicated to making this page flow actually
work.

12.1 The Relationship Model 463

All users
[revoss | |0 | [z]] e

m [homas Hobbes

g Sasha Smith

Hippo Potamus

. David Jones

I Previous I I I 3 I I Next I

()

Figure 12.2 A mockup of finding a user to follow.

12.1 The Relationship Model

Odur first step in implementing user following and followers is to construct a data model,
which is not as straightforward as it seems. Naively, it seems that a has_many relationship
should do: a user has_many following and has_many followers. As we will see, there is
a problem with this approach, and we’ll learn how to fix it using has_many :through.
I¢’s likely that many of the ideas in this section won’t seem obvious at first, and it may
take a while for the rather complicated data model to sink in. If you find yourself getting
confused, try pushing forward to the end; then, read the section a second time through

to see if things are clearer.

464 Chapter 12: Following Users

')
Name Thomas Hobbes
Thomas Hobbes | wr e
: Microposts 89
) 23 144
Also poor, nasty, brutish, and short.
Posted 1 day ago.
Life of man in a state of nature is solitary.
Posted 2 days ago.
Lex naturalis is found out by reason.
Posted 2 days ago.
. J
[Prvous | [+] [2] [3 | [x|

()

Figure 12.3 A mockup of the profile of another user, with a follow button.

12.1.1 A Problem with the Data Model
(and a Solution)

As a first step toward constructing a data model for user following, let’s examine a typical
case. For instance, consider a user who follows a second user: we could say that, e.g.,
Calvin is following Hobbes, and Hobbes is followed by Calvin, so that Calvin is the
Jfollowerand Hobbes is followed. Using Rails’ default pluralization convention, the set of all
such followed users would be called the followeds, but that is ungrammatical and clumsy;
instead, we will override the default and call them following, so that user.following
will contain an array of the users being followed. Similarly, the set of all users following

12.1 The Relationship Model 465

s N
Name Thomas Hobbes
Thomas Hobbes | v wsesss
Microposts 89
23 145
olowing
Also poor, nasty, brutish, and short.
Posted 1 day ago.
Life of man in a state of nature is solitary.
Posted 2 days ago.
Lex naturalis is found out by reason.
Posted 2 days ago.
o J
Lpovess | [+ | [z | [| [lee]

()

Figure 12.4 A profile mockup with an unfollow button and incremented followers count.

a given user is that user’s followers, and user.followers will be an array of those
users.

This suggests modeling the followingusers as in Figure 12.6, with a following table
and a has_many association. Since user.following should be an array of users, each
row of the following table would need to be a user, as identified by the followed._id,
together with the follower_id to establish the association.? In addition, since each
row is a user, we would need to include the user’s other attributes, including the name,
password, etc.

2. For simplicity, Figure 12.6 suppresses the following table’s id column.

466 Chapter 12: Following Users

C)

' 4 ~
What's up? |
ey ,
u" 67 microposts
21 7
following followers
: ; Thomas Hobbes Also poor, nasty, brutish,
. and short.
Posted 1 day ago.
Sasha Smith Lorem ipsum dolor sit amet,
consectetur.
Fa Posted 2 days ago.
Thomas Hobbes Life of man in a state
@) of nature is solitary
Posted 2 days ago.
22M John Calvin Excepteur sint occaecat _ Y.

"8 posted 3 days ago.
[anu-]l1]|2]|3][ﬂnn|

Figure 12.5 A Home page mockup, with status feed and incremented following count.

user
id name email
— 1 Michael Hartl mhartl@example.com
following
has_many follower_id followed_id name email
L 2
- 1
1 10
> 1 8

Figure 12.6 A naive implementation of user following.

12.1 The Relationship Model 467

The problem with the data model in Figure 12.6 is that it is terribly redundant:
each row contains not only each followed user’s id, but all their other information as
well—all of which is already in the users table. Even worse, to model user followers we
would need a separate followers table. Finally, this data model is a maintainability
nightmare, since each time a user changed (say) his name, we would need to update not
just the user’s record in the users table but also every row containing that user in both
the following and followers tables.

The problem here is that we are missing an underlying abstraction. One way to
find the proper abstraction is to consider how we might implement following in a web
application. Recall from Section 6.3.3 that the REST architecture involves resources that
are created and destroyed. This leads us to ask two questions: When a user follows
another user, what is being created? When a user unfollows another user, what is being
destroyed?

Upon reflection, we see that in these cases the application should either create or
destroy a relationship (or connection’) between two users. A user then has_many :re-
lationships, and has many following (or followers) through those relationships.
Indeed, Figure 12.6 already contains most of the implementation: since each followed
user is uniquely identified by followed_id, we could convert following to a rela-
tionships table, omit the user details, and use followed id to retrieve the followed
user from the users table. Moreover, by considering reverse relationships, we could use
the follower_id column to extract an array of user’s followers.

To make a following array of users, it would be possible to pull out an array
of followed_id attributes and then find the user for each one. As you might expect,
though, Rails has a way to make this procedure more convenient; the relevant technique
isknown ashas_many :through.? Aswewill see in Section 12.1.4, Rails allows us to say
that a user is following many users through the relationships table, using the succinct code

has_many :following, :through => :relationships, :source => "followed_ id"

This code automatically populates user . following with an array of followed users. A
diagram of the data model appears in Figure 12.7.

3. Unfortunately, Rails uses connection for a database connection, so introducing a Connection model leads
to some rather subtle bugs. (I learned this the hard way when developing Insoshi.)

4. Indeed, this construction is so characteristic of Rails that well-known Rails programmer Josh Susser used it
as the name of his geek blog.

468 Chapter 12: Following Users

user
id name email
— 1 Michael Hartl mhartl @ example.com
user.following
user
id name email
relationships P
through | follower_id | followed_id | has_many
{1 2 - user
» 1 7 -has_many id name email
—~ 7
3 1
7 2
| 1 10 k< user
> 1 has_many | id name email
- =10
1 8 NG
9 1 has_many
user
id name email
8

User has_many :following, :through => :relationships,
:source => “followed_id”

Figure 12.7 A model of user following through an intermediate Relationship model.

To get started with the implementation, we first generate a Relationship model as
follows:

$ rails generate model Relationship follower_id:integer followed_ id:integer

Since we will be finding relationships by follower_id and by followed_id, we
should add an index on each column for efficiency, as shown in Listing 12.1.

Listing 12.1 Adding indices on the follower_id and followed_id columns.
db/migrate/<timestamp>_ create_relationships.rb

class CreateRelationships < ActiveRecord::Migration
def self.up
create_table :relationships do |t]
t.integer :follower_id
t.integer :followed_id

t.timestamps
end

12.1 The Relationship Model 469

add_index :relationships, :follower_id
add_index :relationships, :followed_id
end

def self.down
drop_table :relationships
end
end

We then migrate the database and prepare the test database as usual:

$ rake db:migrate
$ rake db:test:prepare

The result is the Relationship data model shown in Figure 12.8.

As with any new model, before moving on, we should define the model’s accessible
atcributes. In the case of the Relationship model, the fol1owed_id should be accessible,
since users will create relationships through the web, but the follower_id attribute
should not be accessible; otherwise, malicious users could force other users to follow
them. The result appears in Listing 12.2.

Listing 12.2 Making a relationship’s followed_id (but not follower_id) accessible.
app/models/relationship.rb

class Relationship < ActiveRecord: :Base
attr_accessible :followed_id
end

relationships
id integer
follower_id integer
followed_id integer
created_at datetime
updated_at datetime

Figure 12.8 The Relationship data model.

470 Chapter 12: Following Users

12.1.2 User/Relationship Associations

Before implementing following and followers, we first need to establish the association
between users and relationships. A user has_many relationships, and—since relationships
involve fwo users—a relationship belongs_to both a follower and a followed user.

As with microposts in Section 11.1.2, we will create new relationships using the user
association, with code such as

user.relationships.create(:followed_id => ...)

We start with a test, shown in Listing 12.3, which builds an @relationships instance
variable (used below) and makes sure that it can be saved using save!. As with create!,
the save! method raises an exception if the save fails; compare this to the use of create!
in Listing 11.4.

Listing 12.3 Testing Relationship creation with save!.
spec/models/relationship_spec.rb

require 'spec_helper'

describe Relationship do

before(:each) do
@follower = Factory(:user)

@followed = Factory(:user, :email => Factory.next(:email))

@relationship = @follower.relationships.build(:followed_id => @followed.id)
end

it "should create a new instance given valid attributes" do
@relationship.save!
end
end

We should also test the User model for a relationships attribute, as shown in
Listing 12.4.

Listing 12.4 Testing for the user.relationships attribute.
spec/models/user_spec.rb

describe User do

12.1 The Relationship Model 471

describe "relationships" do

before(:each) do
@user = User.create! (@attr)
@followed = Factory(:user)
end

it "should have a relationships method" do
@Quser.should respond_to(:relationships)
end
end
end

At this point you might expect application code as in Section 11.1.2, and it’s similar,
but there is one critical difference: in the case of the Micropost model, we could say

class Micropost < ActiveRecord: :Base

belongs_to :user

end

and

class User < ActiveRecord::Base

has_many :microposts

end

because the microposts table has a user_id attribute to identify the user
(Section 11.1.1). An id used in this manner to connect two database tables is known as
a foreign key, and when the foreign key for a User model object is user_id, Rails can
infer the association automatically: by default, Rails expects a foreign key of the form
<class>_id, where <class> is the lower-case version of the class name.’ In the present

5. Technically, Rails uses the underscore method to convert the class name to an id. For example, "Foo-
Bar".underscore is foo_bar, so the foreign key for a FooBar object would be foo_bar_id. (Incidentally,
the inverse of underscore is camelize, which converts camel_case to camelcase.)

472 Chapter 12: Following Users
case, although we are still dealing with users, they are now identified with the foreign
key follower_id, so we have to tell that to Rails, as shown in Listing 12.5.°

Listing 12.5 Implementing the user/relationships has_many association.
app/models/user.rb

class User < ActiveRecord::Base

has_many :microposts, :dependent => :destroy
has_many :relationships, :foreign_key => "follower_id",

:dependent => :destroy

end

(Since destroying a user should also destroy that user’s relationships, we’ve gone
ahead and added :dependent => :destroy to the association; writing a test for this
is left as an exercise (Section 12.5).) At this point, the association tests in Listing 12.3
and Listing 12.4 should pass.

Aswith the Micropost model, the Relationship model hasabelongs_to relationship
with users; in this case, a relationship object belongs to both a fol1lower and a followed
user, which we test for in Listing 12.6.

Listing 12.6 Testing the user/relationships belongs_to association.
spec/models/relationship_spec.rb

describe Relationship do

describe "follow methods" do

before(:each) do
@relationship.save
end

6. If you’ve noticed that followed_id also identifies a user, and are concerned about the asymmetric treatment
of followed and follower, you’re ahead of the game. We’ll deal with this issue in Section 12.1.5.

12.1 The Relationship Model 473

it "should have a follower attribute" do
@relationship.should respond_to(:follower)
end

it "should have the right follower" do
@relationship.follower.should == @follower
end

it "should have a followed attribute" do
@relationship.should respond_to(:followed)
end

it "should have the right followed user" do
@relationship.followed.should == @followed
end
end
end

To write the application code, we define the belongs_ to relationship as usual. Rails
infers the names of the foreign keys from the corresponding symbols (i.c., follower_id
from :follower, and followed_id from :followed), but since there is neither a
Followed nor a Follower model we need to supply the class name user. The result is
shown in Listing 12.7.

Listing 12.7 Adding the belongs_to associations to the Relationship model.
app/models/relationship.rb

class Relationship < ActiveRecord::Base
attr_accessible :followed_id

belongs_to :follower, :class_name => "User"
belongs_to :followed, :class_name => "User"
end

The followed association isn’t actually needed until Section 12.1.5, but the parallel
follower/followed structure is clearer if we implement them both at the same time.

12.1.3 Validations

Before moving on, we’ll add a couple of Relationship model validations for completeness.
The tests (Listing 12.8) and application code (Listing 12.9) are straightforward.

474

Listing 12.8 Testing the Relationship model validations.

spec/models/relationship_spec.rb

Chapter 12: Following Users

describe Relationship do

describe "validations" do

it "should require a follower_id" do

@relationship.follower_id =

nil

@relationship.should_not be_valid

end

it "should require a followed_id" do

@relationship.followed_id =

nil

@relationship.should_not be_valid

end
end
end

Listing 12.9 Adding the Relationship model validations.

app/models/relationship.rb

class Relationship < ActiveRecord::Base

attr_accessible :followed_id

belongs_to :follower, :class_name => "User"

belongs_to :followed, :class_name => "User"

validates :follower_id, :presence => true

validates :followed_id, :presence => true

end

12.1.4 Following

We come now to the heart of the Relationship associations: following and followers.

We start with following, as shown Listing 12.10.

Listing 12.10 A test for the user.following attribute.

spec/models/user_spec.rb

describe User do

12.1 The Relationship Model 475

describe "relationships" do

before(:each) do
@Quser = User.create! (@Qattr)
@followed = Factory(:user)
end

it "should have a relationships method" do
@Quser.should respond_to(:relationships)
end

it "should have a following method" do
@Quser.should respond_to(:following)
end
end
end

The implementation uses has_many :through for the first time: a user has many
following through relationships, as illustrated in Figure 12.7. By default, in a has_many
: through association Rails looks for a foreign key corresponding to the singular version

of the association; in other words, code like

has_many :followeds, :through => :relationships

would assemble an array using the followed_id in the relationships table. But,
as noted in Section 12.1.1, user.followeds is rather awkward; far more natural is to
treat “following” as a plural of “followed”, and write instead user. following for the
array of followed users. Naturally, Rails allows us to override the default, in this case
using the : source parameter (Listing 12.11), which explicitly tells Rails that the source
of the following array is the set of followed ids.

Listing 12.11 Adding the User model £ollowing association with has_many :through.
app/models/user.rb

class User < ActiveRecord::Base

has_many :microposts, :dependent => :destroy
has_many :relationships, :foreign_key => "follower_id",
:dependent => :destroy

476 Chapter 12: Following Users

has_many :following, :through => :relationships, :source => :followed

end

To create a following relationship, we’ll introduce a follow! utility method so that
we can write user. follow! (other user).” We'll also add an associated following?
boolean method to test if one user is following another.® The tests in Listing 12.12 show
how we expect these methods to be used in practice.

Listing 12.12 Tests for some following utility methods.
spec/models/user_spec.rb

describe User do

describe "relationships" do

it "should have a following? method" do
@user.should respond_to(:following?)
end

it "should have a follow! method" do
@Quser.should respond_to(:follow!)
end

it "should follow another user" do
@Quser.follow! (@followed)
@Quser.should be_following(@followed)
end

it "should include the followed user in the following array" do
@Quser.follow! (@followed)

7. This follow! method should always work, so (following the model of create! and save!) we indicate
with an exclamation point that an exception will be raised on failure.

8. Once you have a lot of experience modeling a particular domain, you can often guess such utility methods in
advance, and even when you can’t you’ll often find yourself writing them to make the tests cleaner. In this case,
though, it’s OK if you wouldn’t have guessed them. Software development is usually an iterative process—you
write code until it starts getting ugly, and then you refactor it—but for brevity the tutorial presentation is
streamlined a bit.

12.1 The Relationship Model 477

@Quser.following.should include(@followed)
end
end
end

Note that we have replaced the include? method seen in Listing 11.31 with should
include, effectively transforming

@Quser.following.include? (@followed) .should be_true

into the clearer and more succinct

@Quser.following.should include (@followed)

This example shows just how flexible the RSpec boolean convention is; even though in-
clude is already a Ruby keyword (used to include a module, as seen in, e.g., Listing 9.11),
in this context RSpec correctly guesses that we want to test array inclusion.

In the application code, the following? method takes in a user, called followed,
and checks to see if a follower with that id exists in the database; the follow! method calls
create! through the relationships association to create the following relationship.
The results appear in Listing 12.13.°

Listing 12.13 The following? and follow! utility methods.
app/models/user.rb

class User < ActiveRecord::Base

def self.authenticate_with_salt(id, stored_salt)

end

def following? (followed)
relationships.find by followed_id(followed)
end

9. The authenticate_with_salt method is included simply to orient you within the User model file.

478 Chapter 12: Following Users

def follow! (followed)
relationships.create! (:followed_id => followed.id)
end

end

Note that in Listing 12.13 we have omitted the user itself, writing just

relationships.create! (...)

instead of the equivalent code

self.relationships.create! (...)

Whether to include the explicit sel£ is largely a matter of taste.
Of course, users should be able to unfollow other users as well as follow them, which
leads to the somewhat predictable unfollow! method, as shown in Listing 12.14.1°

Listing 12.14 A test for unfollowing a user.
spec/models/user_spec.rb

describe User do

describe "relationships" do

it "should have an unfollow! method" do
@followed.should respond_to(:unfollow!)
end

it "should unfollow a user" do
@Quser.follow! (@followed)

10. The unfollow! method doesn traise an exception on failure—in fact, I don’t even know how Rails indicates
a failed destroy—but we use an exclamation point to maintain the follow!/unfollow! symmetry.

12.1 The Relationship Model 479

@Quser.unfollow! (@followed)
Quser.should_not be_following(@followed)
end
end
end

The code for unfollow! is straightforward: just find the relationship by followed id
and destroy it (Listing 12.15).!!

Listing 12.15 Unfollowing a user by destroying a user relationship.
app/models/user.rb

class User < ActiveRecord::Base

def following? (followed)
relationships.find_by_ followed_id(followed)
end

def follow! (followed)
relationships.create! (:followed_id => followed.id)
end

def unfollow! (followed)

relationships.find by followed_id(followed) .destroy
end

end

12.1.5 Followers

The final piece of the relationships puzzle is to add a user.followers method to go
with user.following. You may have noticed from Figure 12.7 that all the informa-
tion needed to extract an array of followers is already present in the relationships
table. Indeed, the technique is exactly the same as for user following, with the roles of

11. You might notice that sometimes we access id explicitly, as in followed.id, and sometimes we just use
followed. | am ashamed to admit that my usual algorithm for telling when to leave it off is to see if it works
without .id, and then add .id if it breaks.

480 Chapter 12: Following Users

user
id name email
— 1 Michael Hartl | mhartl@example.com
user.followers
reverse_relationships user
followed_id | follower_id id name email
2 1 3
through |7 1 has_many
] 1 3 - user
2 7 id name email
10 1 w2
> 1 > | has_many
8 1 user
»| 1 9 - has_many id name email
— 9

User has_many : followers, :through => :reverse_relationships,

:source => “follower_id”

Figure 12.9 A model for user followers using a reverse Relationship model. (full size)

follower_ id and followed_id reversed. This suggests that, if we could some-
how arrange for a reverse_relationships table with those two columns reversed
(Figure 12.9), we could implement user. followers with little effort.

We begin with the tests, having faith that the magic of Rails will come to the rescue
(Listing 12.16).

Listing 12.16 Testing for reverse relationships.
spec/models/user_spec.rb

describe User do

describe "relationships" do

it "should have a reverse_relationships method" do
@Quser.should respond_to(:reverse_relationships)
end

it "should have a followers method" do

12.1 The Relationship Model 481

@user.should respond_to(:followers)
end

it "should include the follower in the followers array" do
@Quser.follow! (@followed)
@followed.followers.should include (@Quser)
end
end
end

As you probably suspect, we will not be making a whole database table just to hold
reverse relationships. Instead, we will exploit the underlying symmetry between followers
and following to simulate a reverse_relationships table by passing followed_id
as the primary key. In other words, where the relationships association uses the
follower_id foreign key,

has_many :relationships, :foreign_key => "follower_id"
the reverse_relationships association uses followed_id:
has_many :reverse_relationships, :foreign_key => "followed_id"

The followers association then gets built through the reverse relationships, as shown
in Listing 12.17.

Listing 12.17 Implementing user . followers using reverse relationships.
app/models/user.rb

class User < ActiveRecord::Base

has_many :reverse_relationships, :foreign_key => "followed_id",
:class_name => "Relationship",
:dependent => :destroy
has_many :followers, :through => :reverse_relationships, :source => :follower

end

482 Chapter 12: Following Users

(As with Listing 12.5, the test for dependent :destroy is left as an exercise
(Section 12.5).) Note that we actually have to include the class name for this associ-
ation, 1.e.,

has_many :reverse_relationships, :foreign_key => "followed_id",
:class_name => "Relationship"

because otherwise Rails will look for a ReverseRelationship class, which doesn’t
exist.

I’s also worth noting that we could actually omit the : source key in this case, using
simply

has_many :followers, :through => :reverse_relationships

since Rails will automatically look for the foreign key follower_id in this case. 've kept
the :source key to emphasize the parallel structure with the has_many :following
association, but you are free to leave it out.

With the code in Listing 12.17, the following/follower associations are complete,
and all the tests should pass. This section has placed rather heavy demands on your data
modeling skills, and it’s fine if it takes a while to soak in. In fact, one of the best ways
to understand the associations is to use them in the web interface, as seen in the next
section.

12.2 A Web Interface for Following and Followers

In the introduction to this chapter, we saw a preview of the page flow for user following.
In this section, we will implement the basic interface and following/unfollowing func-
tionality shown in those mockups. We will also make separate pages to show the user
following and followers arrays. In Section 12.3, we’ll complete our sample application
by adding the user’s status feed.

12.2.1 Sample Following Data

As in previous chapters, we will find it convenient to use the sample data Rake task to
fill the database with sample relationships. This will allow us to design the look and feel
of the web pages first, deferring the back-end functionality until later in this section.

12.2 A Web Interface for Following and Followers 483

When we last left the sample data populator in Listing 11.20, it was getting rather
cluttered, so we begin by defining separate methods to make users and microposts, and
then add sample relationship data using a new make_relationships method. The
results are shown in Listing 12.18.

Listing 12.18 Adding following/follower relationships to the sample data.
lib/tasks/sample_data.rake

require 'faker'

namespace :db do
desc "Fill database with sample data"
task :populate => :environment do
Rake: :Task['db:reset'].invoke
make_users
make_microposts
make_relationships
end
end

def make_users
admin = User.create! (:name => "Example User",
:email => "example@railstutorial.org",
:password => "foobar",
:password_confirmation => "foobar")
admin.toggle! (:admin)
99.times do |n|

name = Faker::Name.name
email = "example-#{n+l}@railstutorial.org"
password = "password"

User.create! (:name => name,
:email => email,
:password => password,
:password_confirmation => password)
end
end

def make_microposts
User.all(:limit => 6).each do |user|
50.times do
content = Faker::Lorem.sentence(5)
user.microposts.create! (:content => content)
end
end
end

def make_relationships
users = User.all

484 Chapter 12: Following Users

user = users.first

following = users([l..50]

followers = users[3..40]

following.each { |followed| user.follow! (followed) }
followers.each { |follower| follower.follow! (user) }
end

Here the sample relationships are created using the code

def make_relationships

users = User.all

user = users.first

following = users[l..50]

followers = users([3..40]

following.each { |followed| user.follow! (followed) }

followers.each { |follower| follower.follow! (user) }
end

We somewhat arbitrarily arrange for the first user to follow the next 50 users, and then
have users with ids 4 through 41 follow that user back. The resulting relationships will
be sufficient for developing the application interface.

To execute the code in Listing 12.18, populate the database as usual:

$ rake db:populate

12.2.2 Stats and a Follow Form

Now that our sample users have both following and followers arrays, we need to update
the profile pages and home pages to reflect this. We'll start by making a partial to display
the following and follower statistics on the profile and home pages, as mocked up in
Figure 12.1 and Figure 12.5. The result will be displays of the number following and
the number of followers, together with links to their dedicated display pages. We'll next
add a follow/unfollow form, and then make dedicated pages for showing user following
and followers.

A close-up of the stats area, taken from the mockup in Figure 12.1, appears in
Figure 12.10. These stats consist of a count of the number of users the current user
is following and that user’s number of followers, each of which should be a link to its
respective dedicated display page. In Chapter 5, we stubbed out such links with the

12.2 A Web Interface for Following and Followers 485

50 7

following followers

Figure 12.10 A mockup of the stats partial.

dummy text *#7, but that was before we had much experience with routes. This time,
although we’ll defer the actual pages to Section 12.2.3, we’ll make the routes now, as
seen in Listing 12.19. This code uses the :member method inside a resources block,
which we haven’t seen before, but see if you can guess what it does.

Listing 12.19 Adding following and followers actions to the Users controller.
config/routes.rb

SampleApp: :Application.routes.draw do
resources :users do
member do
get :following, :followers
end
end

end

You might suspect that the URLs for user following and followers will look like
/users/1/following and /users/1/followers, and that is exactly what the code
in Listing 12.19 does. Since both pages will be showing data, we use get to arrange
for the URL:s to respond to GET requests (as required by the REST convention for such
pages), and the member method means that the routes respond to URLs containing the
user id. (The other possibility, collection, works without the id, so that

resources :users do
collection do
get :tigers
end
end

would respond to the URL /users/tigers—presumably to display all the tigers in our
application. For more details on such routing options, see the Rails Guides article on

486 Chapter 12: Following Users

Table 12.1 RESTful routes provided by the custom rules in resource in Listing 12.19

HTTP Request URL Action Named route
GET /users/1/following following following user_path(1l)
GET /users/l/followers followers followers_user_path(1l)

“Rails Routing from the Outside In”.) A table of the routes generated by Listing 12.19
appears in Table 12.1; note the named routes for the following and followers pages,
which we’ll put to use momentarily.

With the routes defined, we are now in a position to make tests for the stats partial.
(We could have written the tests first, but the named routes would have been hard to
motivate without the updated routes file.) We could write tests for the user profile page,
since the stats partial will appear there, but it will also appear on the Home page, and this
is a nice opportunity to refactor the Home page tests to take into account users signing
in. The result appears in Listing 12.20.

Listing 12.20 Testing the following/follower statistics on the Home page.
spec/controllers/pages_controller_spec.rb

describe PagesController do

render_views

before(:each) do
@base_title = "Ruby on Rails Tutorial Sample App"
end

describe "GET 'home'" do
describe "when not signed in" do

before(:each) do
get :home
end

it "should be successful" do
response.should be_success
end

it "should have the right title" do
response.should have_selector("title",
:content => "#{@base_title} | Home")

12.2 A Web Interface for Following and Followers

end
end

describe "when signed in" do

before(:each) do
Quser = test_sign_in(Factory(:user))

487

other_user = Factory(:user, :email => Factory.next(:email))

other_user.follow! (Quser)
end

it "should have the right follower/following counts" do

get :home

response.should have_selector("a", :href =>

:content
response.should have_selector("a", :href =>

:content

end
end
end
end

following_user_path (@user),
=> "0 following")
followers_user_path(@Quser),
=> "1 follower")

The core of this test is the expectation that the following and follower counts appear on

the page, together with the right URLs:

response.should have_selector("a", :href => following_ user_path (@Quser),

:content =>

"0 following")

response.should have_selector("a", :href => followers_user_path(@Quser),

:content =>

"1l follower")

Here we have used the named routes shown in Table 12.1 to verify that the links have

the right URLs.

The application code for the stats partial is just a table inside a div, as shown in

Listing 12.21.

Listing 12.21 A partial for displaying follower stats.
app/views/shared/_stats.html.erb

<% @Quser ||= current_user %>
<div class="stats">
<table summary="User stats">
<tr>

488 Chapter 12: Following Users

<td>
<a href="<%= following_user_path(Quser) $%>">

<%= @user.following.count %> following

</td>
<td>
<a href="<%= followers_user_path(Quser) %>">

<%= pluralize(@user.followers.count, "follower") &>

</td>
</tr>
</table>
</div>

Here the user following and follower counts are calculated through the associations using

@Quser.following.count

and

@Quser.followers.count

Compare these to the microposts count from Listing 11.16, where we wrote

@Quser.microposts.count

to count the microposts.
Since we will be including the stats on both the user show pages and the home page,
the first line of Listing 12.21 picks the right one using

<% @user ||= current_user %>

12.2 A Web Interface for Following and Followers 489

As discussed in Box 9.4, this does nothing when @user is notnil (as on a profile page),
but when it is (as on the Home page) it sets @user to the current user.
One final detail worth noting is the presence of CSS ids on some elements, as in

This is for the benefit of the Ajax implementation in Section 12.2.5, which accesses
elements on the page using their unique ids.

With the partial in hand, including the stats on the Home page is easy, as shown
in Listing 12.22. (This also gets the test in Listing 12.20 to pass.) The result appears in
Figure 12.11.

ann Ruby on Rails Tutorial Sample App | Home. ™

S;ilmp.le A[.)p

Whatls up? f Exarr ple User

]

Example User Omnis aut explicabo et
temponbus OMNis ex consequatur.

Example User Amet nisi blanditiis quia
renum aut sit

Example User lusto sequi aut voluplas
dasarunt dio non

Example Uiser Assumenda voluptale ea
omnis aut laborum commodi labore sed -

e e

Figure 12.11 The Home page (/) with follow stats.

S99

490 Chapter 12: Following Users

Listing 12.22 Adding follower stats to the Home page.
app/views/pages/home.html.erb

<% if signed_in? %>

<%= render 'shared/user_info' %>
<%= render 'shared/stats' $%>
</tda>
</tr>
</table>
<% else %>

<% end %>

We'll render the stats partial on the profile page in a moment, but first let’s make a
partial for the follow/unfollow button, as shown in Listing 12.23.

Listing 12.23 A partial for a follow/unfollow form.
app/views/users/_follow form.html.erb

<% unless current_user? (Quser) &>

<div id="follow_form">

<% if current_user.following? (Quser) %>
<%= render 'unfollow' %>

<% else %>
<%= render 'follow' %>

<% end %>

</div>

<% end 3>

This does nothing but defer the real work to followand unfollow partials, which need
a new routes file with rules for the Relationships resource, which follows the Microposts
resource example (Listing 11.21), as seen in Listing 12.24.

Listing 12.24 Adding the routes for user relationships.
config/routes.rb

SampleApp: :Application.routes.draw do

12.2 A Web Interface for Following and Followers 491

resources :sessions, :only => [:new, :create, :destroy]
resources :microposts, :only => [:create, :destroy]
resources :relationships, :only => [:create, :destroy]

end

The follow/unfollow partials themselves are shown in Listing 12.25 and Listing 12.26.

Listing 12.25 A form for following a user.
app/views/users/_follow.html.erb

<%= form_for current_user.relationships.
build(:followed_id => @user.id) do |f| %>
<div><8%= f.hidden_field :followed_id $%$></div>
<div class="actions"><%= f.submit "Follow" $%></div>
<% end %>

Listing 12.26 A form for unfollowing a user.
app/views/users/_unfollow.html.erb

<%= form_for current_user.relationships.find_by_followed_id(@user),
:html => { :method => :delete } do |f| %>
<div class="actions"><%= f.submit "Unfollow" $></div>
<% end %>

These two forms both use form_for to manipulate a Relationship model object;
the main difference between the two is that Listing 12.25 builds a new relationship,
whereas Listing 12.26 finds the existing relationship. Naturally, the former sends a PosT
request to the Relationships controller to create a relationship, while the latter sends a
DELETE request to destroy a relationship. (We’ll write these actions in Section 12.2.4.)
Finally, you’ll note that the follow/unfollow form doesn’t have any content other than
the button, but it still needs to send the followed_id, which we accomplish with
hidden_field; this produces HTML of the form

<input id="relationship_followed_id" name="relationship[followed_ id]"
type="hidden" value="3" />

which puts the relevant information on the page without displaying it in the browser.

492 Chapter 12: Following Users

MID [lecaihost 1000/ uiers /8

Ruby on Rails Tutorial Sample App | Ada Hickle r'vi

S.émp'lé App

. Name Ada Hickle
[0] Ada Hickle UL e
Microposts [
.';";:.
‘map HashWithIndifferentAccess
action show
9. 8

controller: users

Figure 12.12 A user profile with a follow button (/users/8).

We can now include the follow form and the following statistics on the user profile
page simply by rendering the partials, as shown in Listing 12.27. Profiles with follow
and unfollow buttons, respectively, appear in Figure 12.12 and Figure 12.13.

Listing 12.27 Adding the follow form and follower stats to the user profile page.
app/views/users/show.html.erb

<table class="profile" summary="Profile information">
<tr>
<td class="main">
<hl>
<%= gravatar_for @user $>
<%= @Quser.name %>
</hl>

<%= render 'follow_form' if signed_in? %>

12.2 A Web Interface for Following and Followers 493

</td>

<td class="sidebar round">
Name <%= @user.name $>

URL <%= link_to user_path(Quser), Quser $%>

Microposts <%= @Quser.microposts.count %>
<%= render 'shared/stats' $>

</td>

</tr>
</table>

We'll get these buttons working soon enough—in fact, we'll do it two ways, the
standard way (Section 12.2.4) and using Ajax (Section 12.2.5)—but first we’ll finish the
HTML interface by making the following and followers pages.

Ruby on Rails Tutorial Sample App | Constance Beckes -
hitp | lecalhast 3000/ uiers /S) W
Ruby on Rails Tutoria =
Sample App
l Constance Becker sl
i URL /usérs/

(Unolion) Microposts 50

Tempone S6qui 651 AUt MAGNAM OCCHBCAt,

Quaerat sed odit nemo temporibus placeat

Officiis consectetur assumenda qui saepe.
Posted 18 r s 2y

Voluptatum ut non molestias consequatur harum ot ut aut
voluptates.
Ex voluptates perferendis expedita veniam molestias
impedit dolores voluptas autem

wl

Figure 12.13 A user profile with an unfollow button (/users/6).

494 Chapter 12: Following Users

12.2.3 Following and Followers Pages

Pages to display user following and followers will resemble a hybrid of the user profile page
and the user index page (Section 10.3.1), with a sidebar of user information (including
the following stats) and a table of users. In addition, we’ll include a raster of user profile
image links in the sidebar. Mockups matching these requirements appear in Figure 12.14
(following) and Figure 12.15 (followers).

Our first step is to get the following and followers links to work. We'll follow
Twitter’s lead and have both pages to require user signin. For signed-in users, the pages

Following Name John Calin

Microposts 67
% Thomas Hobbes
g Sasha Smith

E Hippo Potamus

. David Jones

IPre\mus] |1| |2] |3| INontI . J

-

=18

DA 4]
X

X

XIXIXIXID

X

XXIXXD

X

XXX

Figure 12.14 A mockup of the user following page.

12.2 A Web Interface for Following and Followers 495

Followers Name_ Jofn Cabin

Microposts 67
& Michael Hartl

Raoul Duke

-

E Hippo Potamus

g Sasha Smith

oo | [+ | [2] [] [en] \ /

AKX Y E :
MIXXNXNXI &
XIXIXIXIX Y]
DA X

Figure 12.15 A mockup of the user followers page.

should have links for following and followers, respectively. Listing 12.28 expresses these

expectations in code.!?

Listing 12.28 Test for the following and followers actions.
spec/controllers/users_controller_spec.rb

describe UsersController do

12. Everything in Listing 12.28 has been covered elsewhere in this tutorial, so this is a good exercise in reading

code.

496 Chapter 12: Following Users

describe "follow pages" do
describe "when not signed in" do

it "should protect 'following'" do
get :following, :id => 1
response.should redirect_to(signin_path)
end

it "should protect 'followers'" do
get :followers, :id => 1
response.should redirect_to(signin_path)
end
end

describe "when signed in" do

before(:each) do
@Quser = test_sign_in(Factory(:user))
@other_user = Factory(:user, :email => Factory.next(:email))
@Quser.follow! (@other_user)

end

it "should show user following" do
get :following, :id => @user
response.should have_selector("a", :href => user_path(@other_user),
:content => @other_user.name)

end

it "should show user followers" do

get :followers, :id => @other_user
response.should have_selector("a", :href => user_path(@user),
:content => @Quser.name)
end
end
end

end

The only tricky part of the implementation is realizing that we need to add two new
actions to the Users controller; based on the routes defined in Listing 12.19, we need
to call them following and followers. Each action needs to set a title, find the user,
retrieve either @user. following or @user.followers (in paginated form), and then
render the page. The result appears in Listing 12.29.

12.2 A Web Interface for Following and Followers

Listing 12.29 The following and followers actions.
app/controllers/users_controller.rb

497

class UsersController < ApplicationController
before_filter :authenticate, :except => [:show, :new, :create]

def following
@title = "Following"
@user = User.find(params|[:id])
@Qusers = @Quser.following.paginate(:page => params|[:page])
render 'show_follow'
end

def followers
@title = "Followers"
@user = User.find(params|[:id])
@Qusers = @user.followers.paginate(:page => params|:page])
render 'show_follow'
end

end

Note here that both actions make an explicit call to render, in this case rendering a view

called show_follow, which we must create. The reason for the common view is that

the ERD is nearly identical for the two cases, and Listing 12.30 covers them both.

Listing 12.30 The show_£ollow view used to render following and followers.
app/views/users/show_ follow.html.erb

<table summary="Information about following/followers">
<tr>
<td class="main">
<hl><%= @title $%></hl>

<% unless @users.empty? %>
<ul class="users">
<%= render @users 3>

<%= will_paginate @users %>
<% end %>
</tda>

498 Chapter 12: Following Users

<td class="sidebar round">
Name <%= @Quser.name 3>

URL <%= link_to user_path(Quser), @user %>

Microposts <%= @Quser.microposts.count %>
<%= render 'shared/stats' $%>
<% unless @users.empty? %>
<% @users.each do |user| %>
<%= link_to gravatar_for(user, :size => 30), user %>
<% end %>
<% end %>
</tda>
</txr>
</table>

There’s a second detail in Listing 12.29 worth noting: in order to protect the pages for
following and followers from unauthorized access, we have changed the authentication
before filter to use : except instead of :only. So far in this tutorial, we have used :only
to indicate which actions the filter gets applied to; with the addition of the new protected
actions, the balance has shifted, and it is simpler to indicate which actions shouldn’t be
filtered. We do this with the :except option to the authenticate before filter:

before_filter :authenticate, :except => [:show, :new, :create]

With that, the tests should now be passing, and the pages should render as shown
in Figure 12.16 (following) and Figure 12.17 (followers).

You might note that, even with the common show_followers partial, the
following and followers actions still have a lot of duplication. Moreover, the
show_followers partial itself shares common features with the user show page. Sec-
tion 12.5 includes exercises to eliminate these sources of duplication.

12.2.4 A Working Follow Button the Standard Way

Now that our views are in order, it’s time to get the follow/unfollow buttons working.
Since following a user creates a relationship, and unfollowing a user destroys a rela-
tionship, this involves writing the create and destroy actions for the Relationships
controller. Naturally, both actions should be protected; for signed-in users, we will use
the follow! and unfollow! utility methods defined in Section 12.1.4 to create and
destroy the relevant relationships. These requirements lead to the tests in Listing 12.31.

12.2 A Web Interface for Following and Followers

ano Ruby 0n Rails Tutorsl Sample App | Following

499

heto //lecalhast 1000/ following

Sa m ple A p
Following e
Microposts 50

! ~1] - 1O
nstance Becker | delete EnEaEgEaEa
Arocel Hoppe | delee DEEEE
s. Paxton Durgan | defete EE EEE
Ada Hickle | delete EE EEE
r 0]0]00]O]

leleleleleleleleld .10

Figure 12.16 Showing the users being followed by the current user.

Listing 12.31 Tests for the Relationships controller actions.
spec/controllers/relationships_controller_spec.rb

require 'spec_helper'

describe RelationshipsController do

describe "access control" do

it "should require signin for create" do
post :create
response.should redirect_to(signin_path)
end

it "should require signin for destroy" do
delete :destroy, :id => 1
response.should redirect_to(signin_path)
end
end

500 Chapter 12: Following Users

describe "POST 'create'" do

before(:each) do

@Quser = test_sign_in(Factory(:user))

@followed = Factory(:user, :email => Factory.next(:email))
end

it "should create a relationship" do
lambda do
post :create, :relationship => { :followed_id => @followed }
response.should be_redirect
end.should change(Relationship, :count).by (1)
end
end

describe "DELETE 'destroy'" do

before(:each) do
@Quser = test_sign_in(Factory(:user))
@followed = Factory(:user, :email => Factory.next(:email)
@user.follow! (@followed)
@relationship = @Quser.relationships.find_by_followed_id(@followed)
end

it "should destroy a relationship" do
lambda do
delete :destroy, :id => @relationship
response.should be_redirect
end.should change(Relationship, :count).by(-1)
end
end
end

Note here how
:relationship => { :followed_id => @followed }
simulates the submission of the form with hidden field given by

<%= f.hidden_field :followed_id %>

The controller code needed to get these tests to pass is remarkably concise: we just
retrieve the user followed or to be followed, and then follow or unfollow the user using
the relevant utility method. The full implementation appears in Listing 12.32.

12.2 A Web Interface for Following and Followers 501

Ruby on Rals Tutonal Sample Apo | Followers =
np [/ecainast JO00 followers. VLS

R on Rails Tutorial
Sample Ap
Followers peppimer bt

+]

onstance Becker | delete

Aracel Hoppe | delete .. E E
5 Paxton Durgan| delete Olojojojo
Ada Hickle | delete EEEE
O]O]O|O]O
O]O]O|O]O
| Olojojojo

GEEEEEEEEEXE

Figure 12.17 Showing the current user’s followers.

Listing 12.32 The Relationships controller.
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController
before_filter :authenticate

def create
@Quser = User.find(params|[:relationship][:followed_id])
current_user.follow! (Quser)
redirect_to @user

end

def destroy
Quser = Relationship.find(params[:id]).followed
current_user.unfollow! (@Quser)
redirect_to Quser
end
end

502 Chapter 12: Following Users

With that, the core follow/unfollow functionality is complete, and any user can
follow (or unfollow) any other user.

12.2.5 A Working Follow Button with Ajax

Although our user following implementation is complete as it stands, we have one bit
of polish left to add before starting work on the status feed. You may have noticed in
Section 12.2.4 that both the create and destroy actions in the Relationships controller
simply redirect back to the original profile. In other words, a user starts on a profile page,
follows the user, and is immediately redirected back to the original page. It is reasonable
to ask why the user needs to leave that page at all.

This is exactly the problem solved by Ajax, which allows web pages to send requests
asynchronously to the server without leaving the page.'? Because the practice of adding
Ajax to web forms is quite common, Rails makes Ajax easy to implement. Indeed,
updating the follow/unfollow form partials is trivial: just change

form_for
to

form_for ..., :remote => true

and Rails automagically uses Ajax.'* The updated partials appear in Listing 12.33 and
Listing 12.34.

Listing 12.33 A form for following a user using Ajax.
app/views/users/_follow.html.erb

<%= form_for current_user.relationships.build(:followed_id => Quser.id),
:remote => true do |f| %>
<div><%= f.hidden_field :followed_id %></div>
<div class="actions"><%= f.submit "Follow" $%></div>

<% end 3>

13. Because it is nominally an acronym for asynchronous JavaScript and XML, Ajax is sometimes misspelled
“AJAX”, even though the original Ajax article spells it as “Ajax” throughout.

14. This only works if JavaScript is enabled in the browser, but it degrades gracefully, working exactly as in
Section 12.2.4 if JavaScript is disabled.

12.2 A Web Interface for Following and Followers 503

Listing 12.34 A form for unfollowing a user using Ajax.
app/views/users/_unfollow.html.erb

<%= form_for current_user.relationships.find_by_followed_id(@user),
:html => { :method => :delete }
:remote => true do |f| %>
<div class="actions"><%= f.submit "Unfollow" $></div>
<% end %>

The actual HTML generated by this ERb isn’t particularly relevant, but you might
be curious, so here’s a peek:

<form action="/relationships/117" class="edit_relationship" data-remote="true"
id="edit_relationship_117" method="post">

</form>

This sets the variable data-remote="true" inside the form tag, which tells Rails to
allow the form to be handled by JavaScript. By using a simple HTML property instead
of inserting the full JavaScript code (as in previous versions of Rails), Rails 3 follows the
philosophy of unobtrusive JavaScript.

Having updated the form, we now need to arrange for the Relationships controller
to respond to Ajax requests. We'll start with a couple simple tests. Testing Ajax is quite
tricky, and doing it thoroughly is a large subject in its own right, but we can get started
with the code in Listing 12.35. This uses the xhr method (for “XmIHttpRequest”) to
issue an Ajax request; compare to the get, post, put, and delete methods used in
previous tests. We then verify that the create and destroy actions do the correct
things when hit with an Ajax request. (To write more thorough test suites for Ajax-heavy
applications, take a look at Selenium and Watir.)

Listing 12.35 Tests for the Relationships controller responses to Ajax requests.
spec/controllers/relationships_controller_ spec.rb

describe RelationshipsController do

describe "POST 'create'" do

504 Chapter 12: Following Users

it "should create a relationship using Ajax" do
lambda do
xhr :post, :create, :relationship => { :followed_id => @followed }
response.should be_success
end.should change(Relationship, :count).by (1)
end
end

describe "DELETE 'destroy'" do

it "should destroy a relationship using Ajax" do
lambda do
xhr :delete, :destroy, :id => @relationship
response.should be_success
end.should change(Relationship, :count).by(-1)
end
end
end

As implied by the tests, the application code uses the same create and delete
actions to respond to the Ajax requests that it uses to respond to ordinary POST and
DELETE HTTP requests. All we need to do is respond to a normal HTTP request with
a redirect (as in Section 12.2.4) and respond to an Ajax request with JavaScript.!” The
controller code appears as in Listing 12.36. (See Section 12.5 for an exercise showing an

even more compact way to accomplish the same thing.)

Listing 12.36 Responding to Ajax requests in the Relationships controller.
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_filter :authenticate

def create
@Quser = User.find(params|[:relationship][:followed_id])
current_user.follow! (Quser)
respond_to do |format|

15. At this point you will have to include the default Prototype JavaScript Library into your Rails application
as in Listing 10.39 if you have not done so already.

12.2 A Web Interface for Following and Followers 505

format.html { redirect_to @Quser }
format.js
end
end

def destroy
Quser = Relationship.find(params[:1d]).followed
current_user.unfollow! (Quser)
respond_to do |format|
format.html { redirect_to @user }
format.js
end
end
end

This code uses respond_to to take the appropriate action depending on the kind of
request.'® The syntax is potentially confusing, and it’s important to understand that in

respond_to do |format|
format.html { redirect_to Quser }
format.js

end

only one of the lines gets executed (based on the nature of the request).

In the case of an Ajax request, Rails automatically calls a JavaScripr Embedded
Ruby (.js.erb) file with the same name as the action, i.c., create.js.erb or de-
stroy.js.erb. As you might guess, the files allow us to mix JavaScript and Embedded
Ruby to perform actions on the current page. It is these files that we need to create and
edit in order to update the user profile page upon being followed or unfollowed.

Inside a JS-ERD file, Rails automatically provides the Prototype JavaScript helpers
to manipulate the page using the Document Object Model (DOM). Prototype provides
a large number of methods for manipulating the DOM, but here we will need only two.
First, we will need to know about the Prototype dollar-sign syntax to access a DOM
element based in its unique CSS id. For example, to manipulate the follow_form
element, we will use the syntax

S("follow_form")

16. There is no relationship between this respond_to and the respond_to used in the RSpec examples.

506 Chapter 12: Following Users

(Recall from Listing 12.23 that this is a div that wraps the form, not the form itself.)
The second method we'll need is update, which updates the HTML inside the relevant
element with the contents of its argument. For example, to replace the entire follow
form with the string "foobar", we would write

S("follow_form") .update (" foobar")

Unlike plain JavaScript files, JS-ERD files also allow the use of Embedded Ruby,
which we apply in the create. js. erb file to update the follow form with the unfollow
partial (which is what should show after a successful following) and update the follower
count. The result is shown in Listing 12.37.

Listing 12.37 The JavaScript Embedded Ruby to create a following relationship.
app/views/relationships/create.js.erb

S("follow_form") .update ("<%= escape_javascript (render ('users/unfollow')) %>")
S("followers") .update('<%= "#{Quser.followers.count} followers" %>')

The destroy.js.erb file is analogous (Listing 12.38). Note that, as in
Listing 12.37, we must use the escape_javascript to escape out the result when
inserting HTML.

Listing 12.38 The Ruby JavaScript (R]S) to destroy a following relationship.
app/views/relationships/destroy.js.erb

S("follow_form") .update ("<%= escape_javascript (render ('users/follow')) %>")
S("followers") .update('<%= "#{@user.followers.count} followers" %>')

With that, you should navigate to a user profile page and verify that you can follow and
unfollow without a page refresh.

Using Ajax in Rails is a large and fast-moving subject, so we’ve only been able to
scratch the surface here, but (as with the rest of the material in this tutorial) our treatment
gives you a good foundation for more advanced resources. It’s especially worth noting
that, in addition to Prototype, the JavaScript framework jQuery has gotten a lot of
traction in the Rails community. Implementing the Ajax functions from this section
using jQuery is left as an exercise; see Section 12.5.

12.3 The Status Feed 507

12.3 The Status Feed

We come now to the pinnacle of our sample application: the status feed. Appropriately,
this section contains some of the most advanced material in the entire tutorial. Making the
status feed involves assembling an array of the microposts from the users being followed
by the current user, along with the current user’s own microposts. To accomplish this feat,
we will need some fairly advanced Rails, Ruby, and even SQL programming techniques.

Because of the heavy lifting ahead, it’s especially important to have a sense of where
we're going. A mockup of the final user status feed, which builds on the proto-feed from
Section 11.3.3, appears in Figure 12.18.

What's up? i)
azs 67 microposts
21 7
following followers
N8 Thomas Hobbes Also poor, nasty, brutish,
and short.
Posted 1 day ago.
Sasha Smith Lorem ipsum dolor sit amet,
consectetur.
e Posted 2 days ago.
§ Thomas Hobbes Life of man in a state
of nature is solitary
Posted 2 days ago.
=« John Calvin Excepteur sint occaecat _ Y,
~, Posted 3 days ago.
IPMU||I1I|2||3||N|nI

()

Figure 12.18 A mockup of a user’s Home page with a status feed.

508 Chapter 12: Following Users

microposts
id content user_id
1 — 1 user.feed
2 2 s 1 i
3 4 2 2
4 7 4 7
5 1 5 1
6 18 / 7 8
7 8 9 10
8 9 10 2
10 2

Figure 12.19 The feed for a user (id 1) following users 2, 7, 8, and 10.

12.3.1 Motivation and Strategy

The basic idea behind the feed is simple. Figure 12.19 shows a sample microposts
database table and the resulting feed. The purpose of a feed is to pull out the microposts
whose user ids correspond to the users being followed by the current user (and the current
user itself), as indicated by the arrows in the diagram.

Since we need a way to find all the microposts from users followed by a given user,
we'll plan on implementing a method called £rom_users_£followed_by, which we will
use as follows:

Micropost.from_users_followed_by (user)

Although we don’t yet know how to implement it, we can already write tests for
from users_followed_by, as seen in Listing 12.39.

Listing 12.39 Tests for Micropost.from users_followed_by.
spec/models/micropost_spec.rb

describe Micropost do

describe "from_users_followed_by" do
before(:each) do
@other_user = Factory(:user, :email => Factory.next(:email))

@third_user = Factory(:user, :email => Factory.next(:email))

@user_post = @user.microposts.create! (:content => "foo")

12.3 The Status Feed 509

@other_post = @other_user.microposts.create! (:content => "bar")
@third_post = @third_user.microposts.create! (:content => "baz"

@Quser.follow! (Gother_user)
end

it "should have a from_users_followed_ by class method" do
Micropost.should respond_to(:from users_followed_by)
end

it "should include the followed user's microposts" do
Micropost.from_users_followed_by (@user) .should include (@other_post)
end

it "should include the user's own microposts" do
Micropost.from_users_followed_by (@Quser) .should include (@user_post)
end

it "should not include an unfollowed user's microposts" do
Micropost.from_users_followed_by (Quser) .should_not include(@third_post)
end
end
end

The key here is building the associations in the before (: each) block and then checking
all three requirements: microposts for followed users and the user itself are included, but
a post from an unfollowed user is not.

The feed itself lives in the User model (Section 11.3.3), so we should add an additional
test to the User model specs from Listing 11.31, as shown in Listing 12.40. (Note that
we’ve switched here from using include?, as seen in Listing 11.31, to the more compact
include convention introduced in Listing 12.12.)

Listing 12.40 The final tests for the status feed.
spec/models/user_spec.rb

describe User do

describe "micropost associations" do

describe "status feed" do

510 Chapter 12: Following Users

it "should have a feed" do
Quser.should respond_to(:feed)
end

it "should include the user's microposts" do
Quser. feed.should include (@Gmpl)
Quser.feed.should include (@mp2)

end

it "should not include a different user's microposts" do
mp3 = Factory(:micropost,
:user => Factory(:user, :email => Factory.next(:email)))
@Quser.feed.should_not include (mp3)
end

it "should include the microposts of followed users" do
followed = Factory(:user, :email => Factory.next(:email))
mp3 = Factory(:micropost, :user => followed)
Quser.follow! (followed)
@Quser.feed.should include (mp3)
end
end

end
end

Implementing the feed will be easy; we will simply defer to Micropost.from_-
users_followed_by, as shown in Listing 12.41.

Listing 12.41 Adding the completed feed to the User model.
app/models/user.rb

class User < ActiveRecord::Base

def feed
Micropost.from_users_followed_by (self)

end

end

12.3 The Status Feed 511

12.3.2 A First Feed Implementation

Now it’s time to implement Micropost. from_users_followed_ by, which for sim-
plicity we'll just refer to as “the feed”. Since the final result is rather intricate, we’ll build
up to the final feed implementation by introducing one piece at a time.

The first step is to think of the kind of query we’ll need. What we want to do is
select from the microposts table all the microposts with ids corresponding to the users
being followed by a given user (or the user itself). We might write this schematically as
follows:

SELECT * FROM microposts
WHERE user_id IN (<list of ids>) OR user_id = <user id>

In writing this code, we’ve guessed that SQL supports an IN keyword that allows us to
test for set inclusion. (Happily, it does.)

Recall from the proto-feed in Section 11.3.3 that Active Record uses the where
method to accomplish the kind of select shown above, as illustrated in Listing 11.32.
There, our select was very simple; we just picked out all the microposts with user id

corresponding to thC current user:

Micropost.where("user_id = ?", id)

Here, we expect it to be more complicated, something like

where ("user_id in (#{followed_ids}) OR user_id = 2", user)

(Here we’ve used the Rails convention of user instead of user.id in the condition;
Rails automatically uses the id. We've also omitted the leading Micropost. since we
expect this method to live in the Micropost model itself.)

We see from these conditions that we’ll need an array of ids that a given user is
following (or something equivalent). One way to do this is to use Ruby’s map method,
available on any “enumerable” object, i.e., any object (such as an Array or a Hash) that
consists of a collection of elements.!” We saw an example of this method in Section 4.3.2;
it works like this:

17. The main requirement is that enumerable objects must implement an each method to iterate through the
collection.

512 Chapter 12: Following Users

S rails console
>> [1, 2, 3, 4].map { |i| i.to_s }
=> [nin, mwpw, w3w, wgw]

Situations like the one illustrated above, where the same method (e.g., to_s) gets called on
each element, are common enough that there’s a shorthand notation using an ampersands
and a symbol corresponding to the method:'®

>> [1, 2, 3, 4] .map(&:to_s)
> ["1n, wn, w3w, wgw]

We can use this notation to construct the necessary array of followed user ids by calling id
on each element in user. following. For example, for the first user in the database this
array appears as follows:

>> User.first.following.map (&:id)

=> [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, A5, 46, 47, 48, 49, 50, 51]

At this point, you might guess that code like

Micropost.from_users_followed by (user)

will involve a class method in the Micropost class (a construction last seen in the

User class in Section 7.12). A proposed implementation along these lines appears in
Listing 12.42.

18. This notation actually started as an extension Rails made to the core Ruby language; it was so useful that it
has now been incorporated into Ruby itself. How cool is that?

12.3 The Status Feed 513

Listing 12.42 A first cut at the from_users_followed_by method.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base

def self.from_users_followed_by (user)
followed_ids = user.following.map (&:1id) .join(", ")
where ("user_id IN (#{followed_ids}) OR user_id = ?", user)
end
end

Although the discussion leading up to Listing 12.42 was couched in hypothetical
terms, it actually works! In fact, it might be good enough for most practical purposes.
But it’s not the final implementation; see if you can make a guess about why not before
moving on to the next section. (Hint: What if a user is following 5000 other users?)

12.3.3 Scopes, Subselects, and a Lambda

As hinted at in the last section, the feed implementation in Section 12.3.2 doesn’t scale
well when the number of microposts in the feed is large, as would likely happen if a user
were following, say, 5000 other users. In this section, we’ll reimplement the status feed
in a way that scales better with the number of followed users.

There are a couple of problems with the code in Section 12.3.2. First, the expression

followed_ids = user.following.map(&:1id).join(", ")

pulls 4/l the followed users into memory, and creates an array the full length of the
following list. Since the condition in Listing 12.42 actually just checks inclusion in a set,
there must be a more efficient way to do this, and indeed SQL is optimized for just such
set operations. Second, the method in Listing 12.42 always pulls out @// the microposts
and sticks them into a Ruby array. Although these microposts are paginated in the view
(Listing 11.33), the array is still full-sized."” What we really want is honest pagination
that only pulls out 30 elements at a time.

19. Calling paginate on an Array object converts it into a WillPaginate::Collection object, but that
doesn’t help us much since the entire array has already been created in memory.

514 Chapter 12: Following Users

The solution to both problems involves converting the feed from a class method
to a scope, which is a Rails method for restricting database selects based on certain
conditions. For example, to arrange for a method to select all the administrative users in
our application, we could add a scope to the User model as follows:

class User < ActiveRecord::Base

scope :admin, where(:admin => true)

end
As a result of this scope, the code
User.admin

would return an array of all the site admins.
The main reason scopes are better than plain class methods is that they can be chained
with other methods, so that, for example,

User.admin.paginate (:page => 1)

actually paginates the admins in the database; if (for some odd reason) the site has 100
administrators, the code above will still only pull out the first 30.

The scope for the feed is a bit more complex than the one illustrated above: it needs
an argument, namely, the user whose feed we need to generate. We can do this with an
anonymous function, or lambda (discussed in Section 8.4.2), as shown in Listing 12.43.%0

20. A function bundled with a piece of data (a user, in this case) is known as a closure, which we encountered
briefly in the discussion of blocks in Section 4.3.2.

12.3 The Status Feed 515

Listing 12.43 Improving from_users_followed_by.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base

default_scope :order => 'microposts.created_at DESC'

Return microposts from the users being followed by the given user.
scope :from users_followed_by, lambda { |user| followed_by (user) }

private

Return an SQL condition for users followed by the given user.
We include the user's own id as well.
def self.followed_by (user)

followed_ids = user.following.map (&:1id) .join(", ")

where ("user_id IN (#{followed_ids}) OR user_id = :user_id",

{ :user_id => user })
end
end

Since the conditions on the from_users_followed by scope are rather long, we have

defined an auxiliary function to handle it:

def self.followed_ by (user)
followed_ids = user.following.map (&:1id) .join(", ")
where ("user_id IN (#{followed_ids}) OR user_id = :user_id",
{ :user_id => user }

end

As preparation for the next step, we have replaced
where("... OR user_id = ?", user)

with the equivalent

where("... OR user_id = :user_id", { :user_id => user })

516 Chapter 12: Following Users

The question mark syntax is fine, but when we want the same variable inserted in more
than one place, the second syntax, using a hash, is more convenient.

Box 12.1 Percent paren

The code in this section uses the Ruby percent-parentheses construction, as in

% (SELECT followed_id FROM relationships
WHERE follower_id = :user_id)

You can think of % () as equivalent to double quotes, but capable of making multiline
strings. (If you need a way to produce a multiline string without leading whitespace,
do a Google search for “ruby here document’.) Since % () supports string interpo-
lation, it is particularly useful when you need to put double quotes in a string and
interpolate at the same time. For example, the code

>> foo = "bar"

>> puts % (The variable "foo" is equal to "#{fool}".)
produces

The variable "foo" is equal to "bar".

To get the same output with double-quoted strings, you would need to escape the
internal double quotes with backslashes, as in

>> "The variable \"foo\" is equal to \"#{fool}\"."

In this case, the % () syntax is more convenient since is gets you the same result
without the explicit escaping.

The above discussion implies that we will be adding a second occurrence of user_id
in the SQL query, and indeed this is the case. We can replace the Ruby code

followed_ids = user.following.map (&:1id) .join(", ")
with the SQL snippet

followed_ids = %$(SELECT followed_id FROM relationships
WHERE follower_id = :user_id)

12.3 The Status Feed 517

(See Box 12.1 for an explanation of the % () syntax.) This code contains an SQL subselect,
and internally the entire select for user 1 would look something like this:

SELECT * FROM microposts
WHERE user_id IN (SELECT followed_id FROM relationships
WHERE follower_id = 1)
OR user_id = 1

This subselect arranges for all the set logic to be pushed into the database, which is more

efficient.!
With this foundation, we are ready for the final feed implementation, as seen in

Listing 12.44.

Listing 12.44 The final implementation of from_users_followed by.
app/models/micropost.rb

class Micropost < ActiveRecord: :Base

default_scope :order => 'microposts.created_at DESC'

Return microposts from the users being followed by the given user.
scope :from users_followed_ by, lambda { |user| followed by (user) }

private

Return an SQL condition for users followed by the given user.
We include the user's own id as well.
def self.followed_by (user)

followed_ids = %$(SELECT followed_id FROM relationships

WHERE follower_id = :user_id)
where ("user_id IN (#{followed_ids}) OR user_id = :user_id",
{ :user_id => user })
end
end

21. For a more advanced way to create the necessary subselect, see the blog post “Hacking a subselect in
ActiveRecord”.

518 Chapter 12: Following Users

Rusbyy on Rails Tutonial Sample App | Home -
SEimpié App
What's up? B gronen

Francesco & waltor Dus dute irure
dolor in reprehendent in voluptate velit.

1-. Example User Excepleur sint occascat
. cupidatat non proident
dance Backer Sunt in culpa qui
officia deserunt mollit anim id est

. Ut enim ad minim veniam,
quis nostrud .

Figure 12.20 The Home page with a working status feed.

This code has a formidable combination of Rails, Ruby, and SQL, but it does the job,

and does it well.*

12.3.4 The New Status Feed

With the code in Listing 12.44, our status feed is complete. As a reminder, the code
for the Home page appears in Listing 12.45; this code creates a paginated feed of the
relevant microposts for use in the view, as seen in Figure 12.20.23 Note that the paginate

22. Of course, even the subselect won’t scale forever. For bigger sites, you would probably need to generate the
feed asynchronously using a background job. Such scaling subtleties are beyond the scope of this tutorial, but
the Scaling Rails screencasts are a good place to start.

23. In order make a prettier feed for Figure 12.20, I've added a few extra microposts by hand using the Rails
console.

12.4 Conclusion 519

method actually reaches all the way into the Micropost model method in Listing 12.44,
arranging to pull out only 30 microposts at a time from the database.?*

Listing 12.45 The home action with a paginated feed.
app/controllers/pages_controller.rb

class PagesController < ApplicationController

def home
@title = "Home"
if signed_in?
@micropost = Micropost.new
@feed_items = current_user.feed.paginate(:page => params|:page])
end
end

end

12.4 Conclusion

With the addition of the status feed, we’ve finished the core sample application for Ruby
on Rails Tutorial. This application includes examples of all the major features of Rails,
including models, views, controllers, templates, partials, filters, validations, callbacks,
has_many/belongs_to and has_many :through associations, security, testing, and
deployment. Despite this impressive list, there is still much to learn about Rails. As a
first step in this process, this section contains some suggested extensions to the core
application, as well as suggestions for further learning.

Before moving on to tackle any of the application extensions, it’s a good idea to

merge in your changes and deploy the application:

git add .

git commit -am "Added user following"
checkout master

git merge following-users

git push heroku

BT T Y
Q
[
=

heroku rake db:migrate

24. You can verify this by examining the SQL statements in the development server log file. (The Rails Tutorial
screencasts will cover such subtleties in more depth.)

520 Chapter 12: Following Users

12.4.1 Extensions to the Sample Application

The proposed extensions in this section are mostly inspired either by general features
common to web applications, such as password reminders and email confirmation, or
features specific to our type of sample application, such as search, replies, and messaging.
Implementing one or more of these application extensions will help you make the
transition from following a tutorial to writing original applications of your own.

Don’t be surprised if it’s tough going at first; the blank slate of a new feature can
be quite intimidating. To help get you started, I can give two pieces of general advice.
First, before adding any feature to a Rails application, take a look at the Railscasts
archive to see if Ryan Bates has already covered the subject.?” If he has, watching the
relevant Railscast first will often save you a ton of time. Second, always do extensive
Google searches on your proposed feature to find relevant blog posts and tutorials. Web
application development is hard, and it helps to learn from the experience (and mistakes)
of others.

Many of the following features are quite challenging, and I have given some hints
about the tools you might need to implement them. Even with hints, they are much
more difficult than the book’s end-of-chapter exercises, so don’t be discouraged if you
can’t solve them without considerable effort. Due to time constraints, I am not available
for one-on-one assistance, but if there is sufficient interest I might release standalone
article/screencast bundles on some of these extensions in the future; go to the main Rails
Tutorial website at http://www.railstutorial.org/ and subscribe to the news feed to get
the latest updates.

Replies
Twitter allows users to make “@replies”, which are microposts whose first characters
are the user’s login preceded by the @ sign. These posts only appear in the feed of the
user in question or users following that user. Implement a simplified version of this,
restricting @replies to appear only in the feeds of the recipient and the sender. This
might involve adding an in_reply_ to column in the microposts table and an extra
including_replies scope to the Micropost model.

Since our application lacks unique user logins, you will also have to decide on a way
to represent users. One option is to use a combination of the id and the name, such as

25. My only reservation about Railscasts is that they often omit the tests. This is probably necessary to keep the
episodes nice and short, but you could get the wrong idea about the importance of tests. Once you’ve watched
the relevant Railscast to get a basic idea of how to proceed, I suggest writing the new feature using test-driven
development.

http://www.railstutorial.org/

12.4 Conclusion 521

@l-michael-hartl. Another is to add a unique username to the signup process and
then use it in @replies.

Messaging

Twitter supports direct (private) messaging by prefixing a micropost with the letter “d”.
Implement this feature for the sample application. The solution will probably involve a
Message model and a regular expression match on new microposts.

Follower Notifications

Implement a feature to send each user an email notification when they gain a new

follower. Then make the notification optional, so that users can opt out if desired.
Among other things, adding this feature requires learning how to send mail with

Rails. There is a Railscast on sending email to get you started. Beware that the main

Rails library for sending email, Action Mailer, has gotten a major overhaul in Rails 3, as

seen in the Railscast on Action Mailer in Rails 3.

Password Reminders

Currently, if our application’s users forget their passwords, they have no way to retrieve
them. Because of the one-way secure password hashing in Chapter 7, our application
can’t email the user’s password, but it can send a link to a reset form. Introduce a
PasswordReminders resource to implement this feature. For each reset, you should
create a unique token and email it to the user. Visiting a URL with the token should
then allow them to reset their password to a value of their choice.

Signup Confirmation

Apart from an email regular expression, the sample application currently has no way to
verify the validity of a user’s email address. Add an email address verification step to
confirm a user’s signup. The new feature should create users in an inactive state, email
the user an activation URL, and then change the user to an active state when the URL
gets hit. You might want to read up on state machines in Rails to help you with the
inactive/active transition.

RSS Feed

For each user, implement an RSS feed for their microposts. Then implement an RSS
feed for their status feed, optionally restricting access to that feed using an authentication
scheme. The Railscast on generating RSS feeds will help get you started.

522 Chapter 12: Following Users

REST API

Many web sites expose an Application Programmer Interface (API) so that third-party
applications can get, post, put, and delete the application’s resources. Implement such
a REST API for the sample application. The solution will involve adding respond_to
blocks (Section 12.2.5) to many of the application’s controller actions; these should
respond to requests for XML. Be careful about security; the API should only be accessible
to authorized users.

Search

Currently, there is no way for users to find each other than paging through the user
index or viewing the feeds of other users. Implement a search feature to remedy this.
Then add another search feature for microposts. The Railscast on simple search forms
will help get you started. If you deploy using a shared host or a dedicated server, I suggest
using Thinking Sphinx (following the Railscast on Thinking Sphinx). If you deploy on
Heroku, you should follow the Heroku full text search instructions.

12.4.2 Guide to Further Resources

There are a wealth of Rails resources in stores and on the web—indeed, the supply is
so rich that it can be overwhelming, and it can be hard to know where to start. By now
you know where to start—with this book, of course. And if you’ve gotten this far, you're
ready for almost anything else out there. Here are some suggestions:

o Ruby on Rails Tutorial screencasts: I will be preparing a full-length screencast course
based on this book. In addition to covering all the material in the book, the screen-
casts will be filled with tips, tricks, and the kind of see-how-it’s-done demos that are
hard to capture in print. They will be available on the Ruby on Rails Tutorial web-
site, through Safari Books Online, and through InformIT. Visit the Rails Tutorial
website at http://www.railstutorial.org/ and sign up for the news feed to find out
when the screencasts will be released.?

« Railscasts: It’s hard to overemphasize what a great resource the Railscasts are. I
suggest starting by visiting the Railscasts episode archive and clicking on subjects
that catch your eye.

26. Of course, by the time you read this, they might already be out! In that case, you should definitely buy
them.

http://www.railstutorial.org/

12.5 Exercises 523

+ Scaling Rails: One topic we’ve hardly covered in the Ruby on Rails Tutorial book
is performance, optimization, and scaling. Luckily, most sites will never run into
serious scaling issues, and using anything beyond plain Rails is probably premature
optimization. If you do run into performance issues, the Scaling Rails series from
Gregg Pollack of Envy Labs is a great place to start. I also recommend investigating
the site monitoring applications Scout and New Relic.”” And, as you might suspect
by now, there are Railscasts on many scaling subjects, including profiling, caching,

and background jobs.

+ Ruby and Rails books: As mentioned in Chapter 1, I recommend Beginning Ruby
by Peter Cooper, The Well-Grounded Rubyistby David A. Black, and The Ruby Way
by Hal Fulton for further Ruby learning, and 7he Rails 3 Way by Obie Fernandez

for more about Rails.

+ PeepCode: I mentioned several commercial screencasters in Chapter 1, but the only
one I have extensive experience with is PeepCode. The screencasts at PeepCode are
consistently high-quality, and I warmly recommend them.

12.5 Exercises

1. Add tests for dependent :destroy in the Relationship model (Listing 12.5 and
Listing 12.17) by following the example in Listing 11.11.

2. The respond_to method seen in Listing 12.36 can actually be hoisted out of the
actions into the Relationships controller itself, and the respond_to blocks can be
replaced with a Rails method called respond_with. Prove that the resulting code,
shown in Listing 12.46, is correct by verifying that the test suite still passes. (For
details on this method, do a Google search on “rails respond_with”.)

3. The following and followers actions in Listing 12.29 still have considerable
duplication. Verify that the show_follow method in Listing 12.47 eliminates
this duplication. (See if you can infer what the send method does, as in, e.g.,
@user.send(:following).)

4. Refactor Listing 12.30 by adding partials for the code common to the following/
followers pages, the Home page, and the user show page.

5. Following the model in Listing 12.20, write tests for the stats on the profile page.

27.In addition to being a clever phrase—new relicbeing a contradiction in terms—New Relic is also an anagram
for the name of the company’s founder, Lew Cirne.

524 Chapter 12: Following Users

6. Write an integration test for following and unfollowing a user.

7. Rewrite the Ajax methods from Section 12.2.5 using jQuery in place of Prototype.
Hint: You might want to read the jQuery section of Mikel Lindsaar’s blog post
about jQuery, RSpec, and Rails 3.

Listing 12.46 A compact refactoring of Listing 12.36.

class RelationshipsController < ApplicationController
before_filter :authenticate

respond_to :html, :js

def create
@Quser = User.find(params|[:relationship][:followed_id])
current_user.follow! (@Guser)
respond_with @Quser

end

def destroy
Quser = Relationship.find(params[:1d]).followed
current_user.unfollow! (Quser)
respond_with @Quser
end
end

Listing 12.47 Refactored following and followers actions.
app/controllers/users_controller.rb

class UsersController < ApplicationController

def following
show_follow(:following)
end

def followers
show_follow(:followers)
end

def show_follow(action)
@title = action.to_s.capitalize
@Quser = User.find(params|[:id])

12.5 Exercises 525

@users = @Quser.send(action) .paginate(:page => params]|:page])
render 'show_follow'
end

end

This page intentionally left blank

Index

References to figures are in italics.

References to footnotes are indicated with an “n” followed by the number of the footnote.

(hash symbol), 19
See also comments

* operator, 350

|| = operator, 349-350

+ operator, 126

A

about action, adding the about route (Listing
3.17), 101
About page
About view with HTML structure removed
(Listing 3.31), 115
view for the About page with an Embedded
Ruby title (Listing 3.27), 112
view for the About page with full HTML
structure (Listing 3.23), 108
abstraction layers, 198n7
access control, 436-438
actions, 78
Active Record, 56, 195-196
callback, 247-250
count method, 295
creating user objects, 203-207

finding user objects, 207-208
See also validations
adding files, in Git, 26-27
administrative users, 399—404
the attr_accessible attributes for the User
model without an admin attribute
(Listing 10.37), 403
the sample data populator code with an
admin user (Listing 10.36), 402-403
user delete links (viewable only by admins)
(Listing 10.38), 404
Ajax
implementing follow/unfollow buttons
with, 502-506
responding to Ajax requests in the
Relationships controller (Listing
12.36), 504-505
tests for the Relationships controller
responses to Ajax requests (Listing
12.35), 503-504
ampersand, 512
anchor tag, 108
annotating the model file, 201-202

527

528

arrays, 134-136
assignment, 347
associations, 63—-65
user/relationship, 470473
associative arrays, 139
attr_accessible, 403—404, 413—414
attribute accessors, 152
authenticate method, 258-262
with an explicit third return (Listing 7.28),
281
moving the authenticate method into the
Sessions helper (Listing 11.23),
437-438
tests for the User.authenticate method
(Listing 7.11), 259
with User in place of self (Listing 7.27), 280
User.authenticate method (Listing 7.12),
261
using an if statement and an implicit return
(Listing 7.30), 281
using an if statement (Listing 7.29), 281
using the ternary operator (Listing 7.31),
281
authenticate_with_salt method, 351-352
authentication
adding an authenticate before filter (Listing
10.11), 378
adding authentication to the Microposts
controller actions (Listing 11.24), 438
building your own, 193-194
the deny_access method for user
authentication (Listing 10.12), 378
first tests for authentication (Listing 10.10),
376-377
requiring the right user, 378-382
tests for signed-in users (Listing 10.13), 380
authenticity token, 292
Autotest, 85-86
.autotest configuration file for Autotest on OS
X (Listing 3.9), 86

Index

B

Bates, Ryan, 2
before filters, 365, 378
a correct_user before filter to protect the
edit/update page (Listing 10.14),
380-381
restricting the destroy action to admins
(Listing 10.41), 407408
Beginning Ruby (Cooper), 6, 523
Billups, Toran, 15
Black, David A., 7, 261, 523
blocks, 137-139
Blueprint CSS, 122-124
Booleans, 129—-130
browsers, 11
Bundler, 16-20

business logic, 22

C

callback, 247-250
Capybara, 315n9
cascading style sheets. See CSS
chaining methods, 130, 408
checkout command, 24
Chrome, 11
class methods, 198, 259-261
classes, 82, 144
code for an example user (Listing 4.8),
152
constructors, 144—145
container class, 168
controller class, 150—152
defining a Word class in irb (Listing 4.7),
147
inheritance, 145148
modifying built-in classes, 148-149
user class, 152—154
co command, 24
command lines, 9-11

comments, 125-126

Index

commit command, in Git, 27-28
config directory, 79, 80
constructors, 144—145
Contact page
Contact view with HTML structure
removed (Listing 3.30), 114
generated view for (Listing 3.8), 83
view for the Contact page with an
Embedded Ruby title (Listing 3.26),
112
view for the Contact page with full HTML
structure (Listing 3.22), 107-108
containers, 161
container class, 168
content attribute, making the content attribute
(and only the content attribute)
accessible (Listing 11.2), 413
cookies, 326, 341-344
Cooper, Peter, 6, 523
count method, 295
create action
completed, 338-340
the Microposts controller create
action, 441
Sessions create action with friendly
forwarding, 384
creating microposts, 439-444
cross-site request forgery (CSRF), 114
cross-site scripting attack, 270, 292
CSS, 122-124, 142144
adding stylesheets to the sample application
layout (Listing 4.4), 123
for the container, body and links (Listing
5.3), 165-166
custom CSS, 164-171
HTML source produced by the CSS includes
(Listing 4.6), 144
to make the signup button big, green, and
clickable (Listing 5.5), 170
for microposts (Listing 11.19), 430431

529

navigation CSS (Listing 5.4), 168
stylesheet rules for round corners (Listing
5.6), 170-171
for styling error messages, 302
for the user index, 388
CSS: The Missing Manual (Sawyer
McFarland), 6
Cucumber, 315
current users
adding an authenticate_with_salt method
to the User model (Listing 9.17),
351-352
defining assignment to current_user
(Listing 9.14), 347
filling in the test for signing the user in
(Listing 9.13), 345-346
finding the current user by
remember_token (Listing 9.16), 348
getting and setting, 345-353
the signed-in? helper method
(Listing 9.18), 353
a tempting but useless definition for
current_user (Listing 9.15),
347-348
current_user? method, 381

Cygwin, 11

D

data models

defined, 43

for microposts, 44

for users, 43—44
database indices, 226-227
database migrations. See migration
debug, 227-230

adding some debug information to the site

layout (Listing 6.23), 227

default Rails page, 21

with the app environment, 22
default_scope, 421

530

demo app
deploying, 68-69
Microposts resource, 58—68
modeling users, 43—44
planning the application, 41-43
Users resource, 44—58
deny_access method, 378
destroy action, 404—408, 456
destroying microposts, 452457
mockup of the proto-feed with micropost
delete links, 453
destroying users, 399—-408
ensuring that a user’s microposts are
destroyed along with the user (Listing
11.12), 422
testing that microposts are destroyed
when users are (Listing 11.11),
421-422
development environment, 125, 228-230
development log, 203-205
directories
standard directory and file structure,
16, 17
summary of default Rails directory structure,
18
div tags, 161-162
doctype, 76
Document Object Model (DOM), 505
domain logic, 22
domain-specific language, 84, 88
“Don’t Repeat Yourself” (DRY)
principle, 109
—drb option, 96
duplication, eliminating, 112-115
dynamic pages. See slightly dynamic pages

E

E Text Editor with Console and
Cygwin, 10

each method, 137-138, 142

Emacs, 10

Index

Embedded Ruby, 111-112

empty? method, 129

encrypted passwords, 244-246

Engine Yard, 36

Engine Yard Cloud, 36

environment loading, adding to the
Spork.prefork block (Listing 3.12),
93-94

equality comparison operator, 135-136

ERb. See Embedded Ruby

error messages, on signup, 299-303

exceptions, 207

F

factories, 262
adding Factory Gitrl to the Gemfile
(Listing 7.15), 263
complete factory file, including a
new factory for microposts (Listing
11.8), 419
a factory to simulate User model objects
(Listing 7.16), 264
a test for getting the user show page with a
user factory (Listing 7.17),
264-265
Factory Girl, 263-265
defining a Factory Girl sequence (Listing
10.29), 395
Faker gem, adding to the Gemfile (Listing
10.24), 389-390
feed, 444452
See also RSS feed; status feed
Fernandez, Obie, 4, 6, 85, 523
Fielding, Roy, 232
files
standard directory and file structure,
16, 17
summary of default Rails directory
structure, 18
filtering parameter logging, 303-305
Firebug Lite, 11

Index

Firefox, 11
flash, 48, 308-312, 337
adding a flash message to user signup
(Listing 8.18), 312
adding the contents of the flash variable to
the site layout (Listing 8.16), 309
the flash ERD in the site layout using
content_tag (Listing 8.24), 323
vs. flash.now, 338
a test for a flash message on successful user
signup (Listing 8.17), 310
flash.now, 338
follow form, 484—493
adding the follow form and follower stats to
the user profile page (Listing 12.27),
492-493
adding the routes for user relationships
(Listing 12.24), 490-491
a form for following a user (Listing 12.25),
491
a form for following a user using Ajax
(Listing 12.33), 502
a form for unfollowing a user (Listing
12.26), 491
a partial for a follow/unfollow form (Listing
12.23), 490
follow! method, 477—478
follower notifications, 521
followers, 479—482
implementing user.followers using reverse
relationships (Listing 12.17), 481
following, 461-463
adding following/follower relationships to
the sample data (Listing 12.18),
483-484
adding indices on the follower_id and
followed_id columns (Listing 12.1),
468-469
adding the User model following association
with has_many :through (Listing
12.11), 475-476

531

the following? and follow! uility
methods (Listing 12.15), 477-478
making a relationship’s followed_id (but
not follower_id) accessible (Listing
12.2), 469
problem with the data model (and a
solution), 464—469
Relationship data model, 463-469
sample following data, 482484
test for the user.following attribute (Listing
12.10), 474-475
user/relationship associations, 470-473
See also unfollowing
following? method, 477-478
following/followers pages, 494—498
following and followers actions (Listing
12.29), 497
mockup of the user followers page, 495
mockup of the user following page, 494
show_follow view used to render
following and followers
(Listing 12.30), 497498
test for the following and followers actions
(Listing 12.28), 495-496
follow/unfollow buttons, 498—502
with Ajax, 502-506
forgery, 292
form tag, 291
form_for, 286288, 298
format validation, 218-222
forward slashes, 8
friendly forwarding, 382-384
code to implement friendly forwarding
(Listing 10.17), 383
integration tests for friendly forwarding
(Listing 10.16), 382
Sessions create action with friendly
forwarding (Listing 10.18), 384
full-table scans, 226
Fulton, Hal, 6, 7, 523

functions, 82

532

G
gedit, 10
Gemfile, 16-20
default Gemfile in the first_app directory
(Listing 1.2), 17-18
for the demo app (Listing 2.1), 42
for the demo app (Listing 3.1), 72
for the demo app (Listing 3.11), 92-93
with an explicit version of the sqlite3-ruby
gem (Listing 1.3), 19
the final Gemfile for the sample application
(Listing 10.42), 409
with a Heroku fix needed on some systems
(Listing 1.8), 37
gems, 13, 14
gemsets, 13-14
generate script, 78—79
generated code, and scaffolding, 2
GET, 80-81
Git
adding and committing, 26-28
benefit of using, 28-29
branches, 31-32
committing, 33-34
editing, 33
first-time repository setup, 25-26
first-time setup, 24-25
installing, 12
merging, 34-35
pushing, 25
README file, 31-33
setting a graphical editor, 25
version control with, 24
GitHub, 29-31, 68-69
making a repository at, 73-74
.gitignore, 25-26
augmented .gitignore file (Listing 1.5),
26
default .gitignore created by the rails
command (Listing 1.4), 25

Index

Gravatar, 268-275
adding a Gravatar gem to the Gemfile
(Listing 7.21), 270
defining a gravatar_for helper method
(Listing 7.23), 274
editing, 366
updating the user show page template to
use gravatar_for (Listing 7.24), 275
gVim, 10, 25

H

has_many microposts
a micropost belongs to a user
(Listing 2.11), 64
relationship between a user and its
microposts, 416
a user has many microposts
(Listing 2.10), 64
hash symbol
commenting out lines with, 19
See also comments
hashes, 139-140
nested, 141
have_selector method, 188
Head First HTML, 6
Heinemeier Hansson, David, 2, 3
Help page, code for a proposed Help page
(Listing 3.32), 116-117
Heroku
commands, 39—-40
creating a new application at Heroku
(Listing 1.7), 37
deployment, 37-39
setup, 36-37
Home page
adding follower stats to the Home page
(Listing 12.22), 490
adding microposts creation to the Home
Page (Listing 11.27), 442
with follow stats, 489

Index

generated view for (Listing 3.7), 83
Home view with HTML structure removed
(Listing 3.29), 114
with a link to the signup page (Listing 5.2),
163
mockup with a form for creating microposts,
439
mockup with a proto-feed, 447
with a proto-feed, 457
testing, 456457
view for the Home page with an Embedded
Ruby title (Listing 3.25), 110-111
view for the Home page with full HTML
structure (Listing 3.21), 107
href, 108
HTML
for the form in Figure 8.3 (Listing 8.5), 289
for the signin form produced by Listing 9.4,
331
for signup form, 288-292
typical HTML file with a friendly greeting
(Listing 3.3), 76
for the user edit form, 371
HTTP response codes, 89
HTTP verbs, 8081
hypertext reference, 108

I
IDEs, 9

implicit return, 133

index action, simplified user index action for
the demo application (Listing 2.4), 56

index page, 47

indexes, 226-227

index.html file, 75-78

inheritance, 52

additions to .autotest needed to run

integration tests with Autotest on
Ubuntu Linux (Listing 5.17), 180

533

ApplicationController class with
inheritance (Listing 2.16), 67
classes, 145—148
hierarchies, 66—68
Micropost class with inheritance (Listing
2.13), 66
MicropostsController class with
inheritance (Listing 2.15), 67
User class with inheritance (Listing 2.12),
66
UsersController class with inheritance
(Listing 2.14), 67
initialization hash, 204-205
inspect method, 142
instance variables, 57, 108—112
adding a feed instance variable to the home
action (Listing 11.33), 448
adding a micropost instance variable to the
home action (Listing 11.30), 443
adding an @microposts instance variable to
the user show action, 430
adding an (empty) @feed_items instance
variable to the create action (Listing
11.37), 451
integrated development environments.
See IDEs
integration alternatives, 314-315
integration tests, 178-180, 313-321
adding a view for the Help page (Listing
5.15), 180
adding the help action to the Pages
controller (Listing 5.14), 179
additions to .autotest needed to run
integration tests with Autotest on
OS X (Listing 5.16), 180
for friendly forwarding, 382
a function to sign users in inside of
integration tests (Listing 9.31), 364
for the microposts on the home page

(Listing 11.41), 456-457

534

for routes (Listing 5.13), 179
for signing in and out (Listing 9.30),
362-363
interpolation, 127
IRC clients, 12n8
iTerm, 10

J

JavaScript, 49
adding the default JavaScript libraries to the
sample app (Listing 10.39), 405
JavaScript Embedded Ruby (JS-ERD) files, 505,
506
JavaScript Embedded Ruby to create a
following relationship (Listing 12.37),
506
join method, 136

K

Kate, 10

Katz, Yehuda, 3
Kittrell, Ben, 10-11
Komodo Edit, 11

L

lambda, 295, 307, 318, 514-515
layout files, 107, 112-115
sample application site layout (Listing 3.28),
113
sample application site layout (Listing 4.1),
120
sample application site layout (Listing 4.3),
122
site layout with added structure (Listing 5.1),
159
layout links, 177
changing, 358-361
test for the links on the layout (Listing 5.33),
192

to the user index, 388

Index

length validations, 61-63, 217-218
constraining microposts to at most 140
characters with a length validation
(Listing 2.9), 62
Linux, 10
lists, unordered, 163
literal constructor, 144
literal strings, 126
log files, ignoring, 26
logo helper
header partial with the logo helper from
Listing 5.32 (Listing 5.31), 191-192
template for the logo helper (Listing 5.32),
192
logs
development log with filtered passwords
(Listing 8.12), 304
filtering passwords by default
(Listing 8.13), 304-305
pre-Rails 3 development log with visible
passwords (Listing 8.11), 304

M

Macintosh OS X, 10
MacVim, 10, 25
magic columns, 198, 205
map method, 138-139
mapping, route and URL mapping for site
links, 177
Merb, merger with Rails, 3
message expectations, 266
messaging, 521
methods, 82, 129-132
chaining, 130, 408
defining, 132-133
Micropost model, 411
the basic model, 412—-414
the initial Micropost spec (Listing 11.3),
414

Index

a micropost belongs to a user
(Listing 11.6), 418

the Micropost migration (Listing 11.1),
412

a user has many microposts (Listing 11.7),
418

user/micropost associations, 414-418

validations (Listing 11.14), 424

microposts

adding microposts to the sample data
(Listing 11.20), 433

creating, 439444

CSS for, 430-431

data models for, 44

destroying, 452-457

ensuring that a user’s microposts are
destroyed along with the user, 422

form partial for creating microposts
(Listing 11.28), 442

manipulating, 434-436

ordering the microposts with default_scope
(Listing 11.10), 421

a partial for showing a single micropost
(Listing 11.38), 452—453

proto-feed, 444452

refinements, 419—422

sample microposts, 432-434

showing, 425-434

summary of user/micropost association
methods, 418

testing that microposts are destroyed when
users are, 421-422

testing the order of a user’s microposts
(Listing 11.9), 420

validations, 423-424

Microposts controller, 60-61

create action (Listing 11.26), 441

destroy action (Listing 11.40), 456

in schematic form (Listing 2.8),
60-61

535

Microposts resource, 58, 66-67
access control, 436—438
has_many microposts, 63—65
inheritance hierarchies, 66—68
length validations, 61-63
Rails routes with a new rule for Microposts
resources (Listing 2.7), 60
RESTful routes provided by, 60
routes for the Microposts resource (Listing
11.21), 435
tour, 58-61
migration, 196-200
to add a boolean admin attribute to users
(Listing 10.35), 401
migrating a database with Rake, 45
password migration, 244-246
for the User model (to create a users table)
(Listing 6.2), 198
mockups, 157-158
model-view-controller, 22-23
diagram of MVC in Rails, 55
Users, 230-232
and Users resource, 49—58
Mongtel, 20n12
MVC. See model-view-controller

N

name attribute, 290

named routes, 177, 181, 183-185
footer partial with links (5.22),

184-185

header partial with links (5.21), 184

namespaces, 390-391

navigation. See site navigation

nested hashes, 141, 333

nil, 130-131

(0)
objects, 129-132

or equals assignment operator, 349-350

536

Pages controller

with added about action (Listing 3.16),
100-101

generated Pages controller spec (Listing
3.10), 88

generating, 78-79

generating (Listing 3.4), 78-79

inheritance hierarchy, 7151

made by Listing 3.4 (Listing 3.6), 82

with per-page titles (Listing 3.24), 110

routes for the home and contact actions in
the Pages controller (Listing 3.5), 79

spec with a base title (Listing 3.33),
117-118

spec with a failing test for the About page
(Listing 3.15), 98

spec with title tests (Listing 3.20), 105-106

PagesController, 82

paginating users, 392-397

paginating the users in the index action
(Listing 10.28), 393
testing pagination, 394-397

Index

passwords

Active Record callback, 247-250

a before_save callback to create the
encrypted_password attribute (Listing
7.6), 248

has_password? method for users (Listing
7.7), 251

has_password? method with secure
encryption (Listing 7.10), 256

implementing has_password?, 254-258

insecure, 239

migration, 244-246

migration to add a salt column to the users
table (Listing 7.9), 255

migration to add an encrypted_password
column to the users table
(Listing 7.4), 246

rainbow attack, 254

reminders, 521

secure, 250

secure password test, 251-252

secure password theory, 252-254

testing for the existence of an

palindrome? method, 148-149
Paperclip, 271n21

partial refactoring, 398-399
partials, 171-177

encrypted_password attribute (Listing
7.3), 245

testing that the encrypted_password
attribute is nonempty (Listing 7.5),

adding the CSS for the site footer (Listing
5.12), 175

for displaying form submission error
messages, 300

for the site footer (Listing 5.10), 174

for the site header (Listing 5.9), 174

site layout with a footer partial (Listing
5.11), 175

site layout with partials for the stylesheets
and header (Listing 5.7), 172

for stylesheet includes (Listing 5.8), 173

updating the error-messages partial, 369

247
tests for the has_password? method (Listing
7.8), 252
validations, 240244
See also authenticate method
PeepCode, 523
pending spec, 214-215
percent-parentheses construction, 516
persistence, 196
Phusion Passenger, 36
pluralize text helper, 301
PostgreSQL, 196n5

Index

pound sign. See hash symbol

presence validations, 210-217

Preston-Werner, Tom, 270n19

private keyword, 249

profile images, 268-275

profile links, adding, 360-361

profile pages. See user profile page

protected keyword, 249n4

protecting pages, 376-384
mockup of a protected page, 377

public/index.html file, 75-76

pushing data, 68-69

puts method, 127-128

R

Rails
deploying, 35-40
installing, 15
overview, 3—4
The Rails 3 Way (Fernandez), 4
The Rails 3 Way (Fernandez), 6, 523
rails command, 15-16
Rails console, 125
Rails Machine, 36
Rails root. See root
Rails routes, 181-183

adding a mapping for the root route (Listing

5.20), 182-183

commented-out hint for defining the root
route (Listing 5.19), 182

for static pages (Listing 5.18), 181

rails script, running the rails script to generate a

new application (Listing 1.1), 16
rails server, 20-22
Railscasts, 522
rainbow attack, 254

Rake, 45, 46

a Rake task for populating the database with

sample users (Listing 10.25), 390

537

ranges, 137
README file
improved README file for the sample
app (Listing 3.2), 73
new README file, README.markdown
(Listing 1.6), 33
updating, 73
Red, Green, Refactor, 86-91
Green, 100-102
Red, 97-100
Refactor, 102-103
refactoring, 398-399
a compact refactoring of Listing 12.36
(Listing 12.46), 524
refactored following and followers actions
(Listing 12.47), 524-525
regex, 220
regular expressions, 220
Relationship data model, 463-469
adding the belongs_to associations to the
Relationship model (Listing 12.7),
473
validations, 473-474
relationships attribute, 470-471
Relationships controller (Listing 12.32), 501
reload method, 375
remember tokens, 341, 342—-344
render, 173
replies, 520-521
repositories, first-time repository setup,
25-26
REpresentational State Transfer. See REST
request specs, 178
See also integration tests
resources, advanced Rails resources, 7
resources for Rails, 522-523
REST, 54-56
displaying user show page following REST
architecture, 232-233

538

REST API, 522
reverse relationships, 480-482
root, 8
RSpec, 71-72, 84-85
adding the —drb option to the .rspec file
(Listing 3.14), 96
count method, 295
integration tests, 313-321
request specs, 178
RSS feed, 521
Rubular, 220-222
Ruby
gems, 13, 14
gemsets, 13-14
installing, 12-14
learning Ruby before learning Rails, 4-5
Ruby JavaScript (R]S), to destroy a
following relationship
(Listing 12.38), 506
Ruby on Rails. See Rails
Ruby Version Manager (RVM), 12
The Ruby Way (Fulton), 6, 7, 523
RubyGems, installing, 14-15

S

Safari, 11
salt, 254, 255
sandbox, 203
save!, 470
scaffolding, 2-3
scaling Rails, 7, 523
Schoeneman, Fred, 86
scopes, 514-515
screencasts, 522
search, 522
Seguin, Wayne E., 12
self, 260-261
sessions, 341
defined, 325-326
destroying, 354-356

Index

Sessions controller, 326-328
adding a resource to get the standard
RESTful actions for sessions (Listing
9.2), 327
completed Sessions controller create action
(not yet working) (Listing 9.9),
338-339
tests for the new session action and view
(Listing 9.1), 327
SHAZ2, 253
short-circuit evaluation, 350
Shoulda, 85n7
showing microposts, 425-434
sidebar, 276-279
partial for the user info sidebar (Listing
11.29), 443
signed-in? helper method, 353
signed-in users, requiring, 376-379
signin form, 328-332
code for a failed signin attempt
(Listing 9.8), 336-337
code for the signin form (Listing 9.4), 330
failure, 332-337
HTML for the signing form produced by
Listing 9.4 (Listing 9.5), 331
mockup, 329
pending tests for user signin (Listing 9.10),
340
remembering user signin status forever,
340-344
reviewing form submission, 333-335
success, 338-353
tests for a failed signin attempt
(Listing 9.7), 335-336
signin page, adding the title for the signing
page (Listing 9.3), 328
signin upon signup, 356-357
signing out, 354
destroying a session (user signout) (Listing

9.21), 355

Index

destroying sessions, 354-356

the sign_out method in the Sessions helper
module (Listing 9.22), 356

a test for destroying a session (Listing 9.20),
355

a test_sign_in function to simulate user signin
inside tests (Listing 9.19), 354

signin/signout integration tests, 362—-363

signin/signout links

adding a profile link (Listing 9.29),
360-361

changing, 358-361

changing the layout links for signed-in users
(Listing 9.206), 359

a helper for the site logo (Listing 9.27), 360

a test for a profile link (Listing 9.28), 360

tests for the signin/signout links on the site
layout (Listing 9.25), 358

signup confirmation, 521

signup form

adding an @user variable to the new action
(Listing 8.3), 287

code to display error messages on the signup
form (Listing 8.8), 299

a create action that can handle signup failure
(but not success) (Listing 8.7), 296

CSS for styling error messages (Listing 8.10),
302

error explanation div from the page in Figure
8.11 (Listing 8.19), 317

error messages, 299-303

failure, 292-304

filtering parameter logging, 303-305

finished form, 308

the first signup, 312-313

form HTML, 288-292

a form to sign up new users (Listing 8.2), 286

overview, 283-285

a partial for displaying form submission error
messages (Listing 8.9), 300

539

pluralize text helper, 301
success, 305-313
a template for testing for each field on the
signup form (Listing 8.23), 322-323
testing failure, 292-295
testing signup failure (Listing 8.20), 317
testing signup failure with a lambda
(Listing 8.21), 318
testing signup success (Listing 8.22), 319
testing success, 305-308
the user create action with a save and a
redirect (Listing 8.15), 308
using form_for, 286-288
a wafer-thin amount of CSS for the signup
form (Listing 8.4), 288
a working form, 295-298
signup page
action for the new user signup page
(Listing 5.25), 187
linking the button to the signup page
(Listing 5.30), 190
route for the signup page (Listing 5.29),
189
setting the custom title for the new user
page (Listing 5.27), 188
signin upon signup, 356-357
signing in the user upon signup (Listing
9.24), 357
test for the signup page title (Listing 5.26),
188
testing that newly signed-up users are also
signed in (Listing 9.23), 356-357
testing the signup page (Listing 5.24), 187
the tests for the new users page
(Listing 8.1), 284-285
Users controller, 186188
signup URL, 188-190
site navigation, 159—164
skeleton for a shuffle method attached to the
String class (Listing 4.10), 155

540

skeleton for a string shuffle function (Listing
4.9), 155
slightly dynamic pages, 103
eliminating duplication with layouts,
112-115
instance variables and Embedded Ruby,
108-112
passing title tests, 106-108
testing a title change, 103106
spike, 87
split method, 134-135
Spork, 91-97
adding environment loading to the
Spork.prefork block (Listing 3.12),
93-94
last part of the hack needed to get Spork to
run with Rails 3 (Listing 3.13), 95
SQL injection, 448
SQLite Database Browser, 199, 200
staging area, 27
static pages, 74
with Rails, 78-83
truly static pages, 7578
See also slightly dynamic pages
stats, 484493
a partial for displaying follower stats (Listing
12.21), 487-488
status command, 27
status feed, 444-452, 507
adding a status feed to the Home page
(Listing 11.36), 450
adding the completed feed to the User model
(Listing 12.41), 510
the final implementation of
from_users_followed_by (Listing 12.44),
517
the final tests for the status feed (Listing
12.40), 509-510
a first cut at the from_users_followed_by
method (Listing 12.42), 513

Index

a first feed implementation, 511-513
home action with a paginated feed (Listing
12.45), 519
improving from_users_followed_by (Listing
12.43), 515
mockup of a user’s Home page with a
status feed, 507
mockup of the Home page with a
proto-feed, 447
motivation and strategy, 508-510
a partial for a single feed item (Listing
11.35), 449-450
preliminary implementation for the
micropost status feed (Listing 11.32),
447
scopes, subselects, and a lambda, 513-518
status feed partial (Listing 11.34), 449
tests for Micropost.from_users_followed_by
(Listing 12.39), 508-509
string literals, 126
strings, 126-127
double-quoted, 128-129
printing, 127-128
single-quoted, 128-129
stub About page (Listing 3.18), 101
stubbing, 266
stylesheets. See CSS
Sublime Text editor, 11
subselects, 517
sudo, 14-15
superclass method, 145
symbols, 140-142
system setups, 22, 24

T

TDD. See test-driven development (TDD)
ternary operator, 352-353
test-driven development (TDD), 84
Green, 100-102
Red, 97-100

Index

Red, Green, Refactor, 86-91
Refactor, 102—-103

Spork, 91-97

testing tools, 84-86

tests, 84

access control tests for the Microposts
controller (Listing 11.22), 437

for an admin attribute (Listing 10.34),
399-400

for destroying users (Listing 10.40), 406-407

for failed user signup (Listing 8.6), 293-294

integration tests, 178—180, 313-321

for the micropost model validations (Listing
11.13), 423

for the Microposts controller create action
(Listing 11.25), 440-441

for the Microposts controller destroy action
(Listing 11.39), 454455

for the micropost’s user association (Listing
11.4), 415

for pagination (Listing 10.30), 396-397

passing title tests, 106-108

for the (proto-)status feed (Listing 11.31),
445-446

for the Relationships controller actions
(Listing 12.31), 499-500

for reverse relationships (Listing 12.16),
480-481

for showing microposts on the user show
page (Listing 11.15), 426

signup form testing failure, 292-295

signup form testing success, 305-308

for signup success (Listing 8.14), 306-307

simple integration test for user signup link
(Listing 5.28), 189

for some following utility methods (Listing
12.12), 476477

testing a title change, 103-106

testing for the user.relationships attribute
(Listing 12.4), 470471

541

testing pagination, 394-397
testing relationship creation with save!
(Listing 12.3), 470
testing the following/follower statistics
on the Home page (Listing 12.20),
486487
testing the signup page, 187-188
testing the user/relationships belongs_to
association (Listing 12.6), 472-473
for the user’s microposts attribute (Listing
11.5), 417
whether to use tests from the start, 5
See also Autotest; RSpec
text editors, 9—11
TextMate, 10, 25
Thomas, Dave, 249n4
time helpers, 343
timestamps, 198, 205
title change
passing title tests, 106-108
testing, 103-106
title helper, 119-122, 133-134
defining a title helper (Listing 4.2), 121
title test (Listing 3.19), 104
toggle method, 401-402

U

unfollow form, using Ajax (Listing 12.34),
503
unfollow/follow buttons, 498—502
with Ajax, 502-506
unfollowing
test for unfollowing a user (Listing 12.14),
478-479
unfollowing a user by destroying a user
relationship (Listing 12.15), 479
See also following
uniqueness validation, 222-226
Unix style, 8
unordered list tag, 163

542

update action, 373-376
updating users, 365-376
URIs, defined, 2n3
URLs, defined, 2n3
user edit form, 366-373
adding a Settings link (Listing 10.6), 370
enabling edits, 373-376
HTML for the edit form (Listing 10.7),
371
mockup, 366
a partial for the new and edit form fields
(Listing 10.43), 410
tests for the user edit action (Listing 10.1),
367
tests for the user update action (Listing
10.8), 374-375
updating the error-messages partial from
Listing 8.9 to work with other objects
(Listing 10.4), 369
updating the rendering of user signup errors
(Listing 10.5), 370
the user edit action (Listing 10.2), 368
the user edit view (Listing 10.3), 368-369
the user update action (Listing 10.9), 375
user index, 385-389
CSS for the user index (Listing 10.22),
388
the first refactoring attempt at the index
view (Listing 10.31), 398
the fully refactored user index (Listing
10.33), 399
a layout link to the user index (Listing
10.23), 388
mockup, 385, 400
with pagination (Listing 10.27), 392-393
partial refactoring, 398-399
a partial to render a single user (Listing
10.32), 398
tests for the user index page (Listing 10.19),
385-386

Index

the user index action (Listing 10.20), 387
the user index view (Listing 10.21), 387
view for the user index (Listing 2.6), 57
user info sidebar, 276-279, 443
user model, 194—196
User model
accessible attributes, 202—203
with an added (encrypted) password
attribute, 246
with an added salt, 256
adding the annotate-models gem to the
Gemlfile (Listing 6.4), 201
annotated User model (Listing 6.5), 202
annotating the model file, 201-202
brand new User model (Listing 6.3), 201
generating a User model (Listing 6.1), 197
making the name and email attributes
accessible (Listing 6.6), 203
migration for the User model (to create a
users table) (Listing 6.2), 198
model file, 201-203
User model fro the demo application (Listing
2.5), 57
user objects
creating, 203-207
finding, 207-208
updating, 208-209
user profile page
with microposts, 434
mockup, 425, 462
mockup with a “Settings” link, 371
user show page
adding a name and gravatar, 268-275
adding a sidebar to the user show view
(Listing 7.25), 276
adding an @microposts instance variable to
the user show action (Listing 11.18),
430
adding microposts to the user show page
(Listing 11.16), 427

Index

augmenting, 426432
CSS for styling the user show page including
the sidebar (Listing 7.26), 278-279
a partial for showing a single micropost
(Listing 11.17), 429
tests for the user show page (Listing 7.18),
268-269
a title for the user show page (Listing 7.19),
269
the user show view with name and Gravatar
(Listing 7.22), 271
the user show view with the user’s name
(Listing 7.20), 270
a user sidebar, 276-279
user views, 262
user.followers method, 479482
user/relationship associations, 470-473
implementing the user/relationships
has_many association (Listing 12.5),
472
users
administrative, 399-404
the current_user? method (Listing 10.14),
381
destroying, 399-408
the new user view with partial (Listing
10.44), 410
paginating, 392-397
requiring signed-in users, 376-379
requiring the right user, 378-382
sample users, 389-391
showing, 384-399
stub view for showing user information
(Listing 6.24), 231
summary of user/micropost association
methods, 418
updating, 365-376
Users controller, 52-53
adding following and followers actions to the
Users controller (Listing 12.19), 485

543

current Users controller spec (Listing 7.13),
262

generating a Users controller with a new
action (Listing 5.23), 186

in schematic form (Listing 2.3), 53

with a show action (Listing 6.25), 232

signup page, 186—188

testing the user show page with factories,
263-268

user show action from Listing 6.25 (Listing
7.14), 263

Users resource, 232-236

adding a Users resource to the routes file
(Listing 6.26), 234

correspondence between pages and
URLs, 47

and MVC, 49-58

overview, 44—46

Rails routes with a rule for the Users
resource (Listing 2.2), 52

RESTful routes provided by, 55, 235

user tour, 46—49

weaknesses, 58

\Y%
validations, 61-63

adding a length validation for the name
attribute (Listing 6.15), 218

adding the Relationship model validations
(Listing 12.9), 474

commenting out a validation to ensure a
failing test (Listing 6.8), 212

failing test for the validation of the name
attribute (Listing 6.11), 215

format, 218-222

initial user spec (Listing 6.10), 213

length, 61-63, 217-218

microposts, 423-424

migration for enforcing email uniqueness
(Listing 6.22), 226

544

overview, 210

password, 240-244

for the password attribute (Listing 7.2), 243

practically blank default User spec (Listing
6.9), 212

presence, 210-217

Relationship data model, 473-474

test for the name length validation (Listing
6.14), 217-218

test for the presence of the email attribute
(Listing 6.12), 216-217

test for the rejection of duplicate email
addresses, insensitive to case (Listing
6.20), 223-224

test for the rejection of duplicate email
addresses (Listing 6.18), 222-223

testing the Relationship model validations
(Listing 12.8), 474

tests for email format validation (Listing
6.16), 219

tests for password validations (Listing 7.1),
241-242

uniqueness, 222-226

validating the email format with a regular
expression (Listing 6.17), 220

validating the presence of a name attribute
(Listing 6.7), 211

Index

validating the presence of the name and
email attributes (Listing 6.13), 217
validating the uniqueness of email
addresses, ignoring case
(Listing 6.21), 224
validating the uniqueness of email
addresses (Listing 6.19), 223
Vim, 11
Vim for Windows with Console, 10
virtual attributes, 242—243

A\

Webrat, 72, 315n9

WEBTrick, 20n12

The Well-Grounded Rubyist (Black), 7,
261, 523

will_paginate method, 392-394

Windows, 10

wireframes, 157

wrapping words, a helper to wrap long words

(Listing 11.42), 459

Y
YAML, 236

Z
zero-offset, 135

A
vy
Addison
Wesley

REGISTER

[
2

THIS PROEISGE

Register the Addison-Wesley, Exam Registering your products can unlock
Cram, Prentice Hall, Que, and the following benefits:

Sams products you own to unlock * Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
* A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product.
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products.

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

informi7.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

SAFARI BOOKS ONLINE

I“'orm -com THE TRUSTED TECHNOLOGY LEARNING SOURCE

InformlIT is a brand of Pearson and the online presence
- - for the world’s leading technology publishers. It's your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

+rAddison-Wesley Cisco Press EXAMJCRAM LB‘E Que #LRENTICE §AMS Sat_aggj”

LearniT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

* Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

e Access FREE podcasts from experts at informit.com/podcasts.

* Read the latest author articles and sample chapters at
informit.com/articles.

e Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

¢ Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

I\) fou
h\Y _ ﬁ Tube

Inf“rmIT-cnm THE TRUSTED TECHNOLOGY LEARNING SOURCE

#Addison-Wesley Cisco Press ExXAM/CRAM L-BuM- Que #ERENT'CE §AMS | Safari”

Try Safari Books Online FREE

Get online access to 5,000+ Books and Videos

Safa rl FREE TRIAL—GET STARTED TODAY!
Bedit inias’ www.informit.com/safaritrial

Find trusted answers, fast

Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O'Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques

In addition to gaining access to an incredible inventory of technical books,
Safari’'s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

: v sas FIWILEY

FREE Online
Edition

RUBY ON RAILS 3
TUTORIAL

LEARN RAILS™ BY EXAMPLE

!

Your purchase of Ruby on Rails™ 3 Tutorial includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O'Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: STDDKFH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition, Sa fa rl
please e-mail customer-service@safaribooksonline.com .

Books Online

3 ¢ sas (F)WILEY

	Contents
	Foreword
	Foreword
	Acknowledgments
	About the Author
	Chapter 1 From Zero to Deploy
	1.1 Introduction
	1.1.1 Comments for Various Readers
	1.1.2 “Scaling” Rails
	1.1.3 Conventions in This Book

	1.2 Up and Running
	1.2.1 Development Environments
	1.2.2 Ruby, RubyGems, Rails, and Git
	1.2.3 The First Application
	1.2.4 Bundler
	1.2.5 rails server
	1.2.6 Model-View-Controller (MVC)

	1.3 Version Control with Git
	1.3.1 Installation and Setup
	1.3.2 Adding and Committing
	1.3.3 What Good Does Git Do You?
	1.3.4 GitHub
	1.3.5 Branch, Edit, Commit, Merge

	1.4 Deploying
	1.4.1 Heroku Setup
	1.4.2 Heroku Deployment, Step One
	1.4.3 Heroku Deployment, Step Two
	1.4.4 Heroku Commands

	1.5 Conclusion

	Chapter 2 A Demo App
	2.1 Planning the Application
	2.1.1 Modeling Users
	2.1.2 Modeling Microposts

	2.2 The Users Resource
	2.2.1 A User Tour
	2.2.2 MVC in Action
	2.2.3 Weaknesses of This Users Resource

	2.3 The Microposts Resource
	2.3.1 A Micropost Microtour
	2.3.2 Putting the micro in Microposts
	2.3.3 A User has_many Microposts
	2.3.4 Inheritance Hierarchies
	2.3.5 Deploying the Demo App

	2.4 Conclusion

	Chapter 3 Mostly Static Pages
	3.1 Static Pages
	3.1.1 Truly Static Pages
	3.1.2 Static Pages with Rails

	3.2 Our First Tests
	3.2.1 Testing Tools
	3.2.2 TDD: Red, Green, Refactor

	3.3 Slightly Dynamic Pages
	3.3.1 Testing a Title Change
	3.3.2 Passing Title Tests
	3.3.3 Instance Variables and Embedded Ruby
	3.3.4 Eliminating Duplication with Layouts

	3.4 Conclusion
	3.5 Exercises

	Chapter 4 Rails-Flavored Ruby
	4.1 Motivation
	4.1.1 A title Helper
	4.1.2 Cascading Style Sheets

	4.2 Strings and Methods
	4.2.1 Comments
	4.2.2 Strings
	4.2.3 Objects and Message Passing
	4.2.4 Method Definitions
	4.2.5 Back to the title Helper

	4.3 Other Data Structures
	4.3.1 Arrays and Ranges
	4.3.2 Blocks
	4.3.3 Hashes and Symbols
	4.3.4 CSS Revisited

	4.4 Ruby Classes
	4.4.1 Constructors
	4.4.2 Class Inheritance
	4.4.3 Modifying Built-In Classes
	4.4.4 A Controller Class
	4.4.5 A User Class

	4.5 Exercises

	Chapter 5 Filling in the Layout
	5.1 Adding Some Structure
	5.1.1 Site Navigation
	5.1.2 Custom CSS
	5.1.3 Partials

	5.2 Layout Links
	5.2.1 Integration Tests
	5.2.2 Rails Routes
	5.2.3 Named Routes

	5.3 User Signup: A First Step
	5.3.1 Users Controller
	5.3.2 Signup URL

	5.4 Conclusion
	5.5 Exercises

	Chapter 6 Modeling and Viewing Users, Part I
	6.1 User Model
	6.1.1 Database Migrations
	6.1.2 The Model File
	6.1.3 Creating User Objects
	6.1.4 Finding User Objects
	6.1.5 Updating User Objects

	6.2 User Validations
	6.2.1 Validating Presence
	6.2.2 Length Validation
	6.2.3 Format Validation
	6.2.4 Uniqueness Validation

	6.3 Viewing Users
	6.3.1 Debug and Rails Environments
	6.3.2 User Model, View, Controller
	6.3.3 A Users Resource

	6.4 Conclusion
	6.5 Exercises

	Chapter 7 Modeling and Viewing Users, Part II
	7.1 Insecure Passwords
	7.1.1 Password Validations
	7.1.2 A Password Migration
	7.1.3 An Active Record Callback

	7.2 Secure Passwords
	7.2.1 A Secure Password Test
	7.2.2 Some Secure Password Theory
	7.2.3 Implementing has_password?
	7.2.4 An Authenticate Method

	7.3 Better User Views
	7.3.1 Testing the User Show Page (With Factories)
	7.3.2 A Name and A Gravatar
	7.3.3 A User Sidebar

	7.4 Conclusion
	7.4.1 Git Commit
	7.4.2 Heroku Deploy

	7.5 Exercises

	Chapter 8 Sign Up
	8.1 Signup Form
	8.1.1 Using form_for
	8.1.2 The Form HTML

	8.2 Signup Failure
	8.2.1 Testing Failure
	8.2.2 A Working Form
	8.2.3 Signup Error Messages
	8.2.4 Filtering Parameter Logging

	8.3 Signup Success
	8.3.1 Testing Success
	8.3.2 The Finished Signup Form
	8.3.3 The Flash
	8.3.4 The First Signup

	8.4 RSpec Integration Tests
	8.4.1 Integration Tests with Style
	8.4.2 Users Signup Failure Should not Make a New User
	8.4.3 Users Signup Success Should Make a New User

	8.5 Conclusion
	8.6 Exercises

	Chapter 9 Sign In, Sign Out
	9.1 Sessions
	9.1.1 Sessions Controller
	9.1.2 Signin Form

	9.2 Signin Failure
	9.2.1 Reviewing form Submission
	9.2.2 Failed Signin (Test and Code)

	9.3 Signin Success
	9.3.1 The Completed create Action
	9.3.2 Remember Me
	9.3.3 Current User

	9.4 Signing Out
	9.4.1 Destroying Sessions
	9.4.2 Signin Upon Signup
	9.4.3 Changing the Layout Links
	9.4.4 Signin/Out Integration Tests

	9.5 Conclusion
	9.6 Exercises

	Chapter 10 Updating, Showing, and Deleting Users
	10.1 Updating Users
	10.1.1 Edit Form
	10.1.2 Enabling Edits

	10.2 Protecting Pages
	10.2.1 Requiring Signed-In Users
	10.2.2 Requiring the Right User
	10.2.3 Friendly Forwarding

	10.3 Showing Users
	10.3.1 User Index
	10.3.2 Sample Users
	10.3.3 Pagination
	10.3.4 Partial Refactoring

	10.4 Destroying Users
	10.4.1 Administrative Users
	10.4.2 The destroy Action

	10.5 Conclusion
	10.6 Exercises

	Chapter 11 User Microposts
	11.1 A Micropost Model
	11.1.1 The Basic Model
	11.1.2 User/Micropost Associations
	11.1.3 Micropost Refinements
	11.1.4 Micropost Validations

	11.2 Showing Microposts
	11.2.1 Augmenting the User Show Page
	11.2.2 Sample Microposts

	11.3 Manipulating Microposts
	11.3.1 Access Control
	11.3.2 Creating Microposts
	11.3.3 A Proto-feed
	11.3.4 Destroying Microposts
	11.3.5 Testing the New Home Page

	11.4 Conclusion
	11.5 Exercises

	Chapter 12 Following Users
	12.1 The Relationship Model
	12.1.1 A Problem with the Data Model (and a Solution)
	12.1.2 User/Relationship Associations
	12.1.3 Validations
	12.1.4 Following
	12.1.5 Followers

	12.2 A Web Interface for Following and Followers
	12.2.1 Sample Following Data
	12.2.2 Stats and a Follow Form
	12.2.3 Following and Followers Pages
	12.2.4 A Working Follow Button the Standard Way
	12.2.5 A Working Follow Button with Ajax

	12.3 The Status Feed
	12.3.1 Motivation and Strategy
	12.3.2 A First Feed Implementation
	12.3.3 Scopes, Subselects, and a Lambda
	12.3.4 The New Status Feed

	12.4 Conclusion
	12.4.1 Extensions to the Sample Application
	12.4.2 Guide to Further Resources

	12.5 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

